

G-Probe-1 - An International Proficiency Test for Microprobe Laboratories - Report on Round 1 : February 2002 (TB-1 Basaltic Glass)

Philip J. Potts (1)*, Michael Thompson (2) and Stephen Wilson (3)

(1) Department of Earth Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK

(2) School of Biological and Chemical Sciences, Birkbeck College, Gordon House, London, WC1H OPP, UK

(3) United States Geological Survey, Box 25046 MS 973, Denver Federal Center, Denver, Colorado 80225, USA

* Corresponding author: e-mail p.j.potts@open.ac.uk

Results are presented for round one of a new international proficiency testing programme designed for microprobe laboratories involved in the routine analysis of silicate minerals. The sample used for this round was TB-1, a basaltic glass fused and prepared by the USGS. Thirty nine laboratories contributed data to this round, the majority of major element results being undertaken by EPMA and the majority of trace elements by LA-ICP-MS. Assigned values were derived from the median of results produced by nine selected laboratories that analysed powdered material by conventional ICP-MS, INAA and XRF techniques using bulk powders of the sample. Submitted microprobe results were evaluated using a target precision calculated using the Horwitz function, adopting the same criteria as those used for "applied" geochemistry laboratories in the companion GeoPT proficiency testing programme for laboratories involved in the routine bulk analysis of silicate rocks. An evaluation of results from participating microprobe laboratories indicated that overall, data were compatible with this precision function. A comparison between the performance of bulk and microprobe techniques used in the analysis of the basaltic glass showed remarkably good agreement, with significant bias only observed for the major oxide MgO.

Keywords: proficiency testing, quality assurance, G-Probe, TB-1, basaltic glass, microprobe laboratories.

On présente ici les résultats de la première session du GeoPT-Min. Il s'agit du nouveau programme international de test de compétence conçu spécialement pour les laboratoires impliqués dans l'analyse in situ de routine de silicates. L'échantillon utilisé dans ce test était TB-1, un verre basaltique fondu et préparé par l'USGS. Trente neuf laboratoires ont participé à cette session. Les données d'éléments majeurs ont été fournies majoritairement par analyse par EPMA et la majorité des données d'éléments en trace par LA-ICP-MS. Les valeurs assignées ont été extraites à partir de la médiane des résultats produits par neuf laboratoires sélectionnés qui ont analysé le même matériel, sous forme de poudre, par ICP-MS conventionnel, INAA et par XRF. Les résultats par microsonde soumis ont été évalués en utilisant une précision cible calculée avec la fonction d'Horwitz. Les mêmes critères que ceux utilisés dans GeoPT: le test de compétence jumeau destiné aux laboratoires spécialisés dans l'analyse de routine de roches silicatées, ont été adoptés. Une évaluation des résultats des laboratoires d'analyse par microsonde a indiqué que, en général, les données étaient compatibles avec la fonction de précision d'Horwitz. Une comparaison entre les performances de l'analyse globale et celles de l'analyse par microsonde, appliquées à l'analyse du verre basaltique, montre un accord remarquable général, le seul biais significatif étant observé pour l'oxyde majeur MgO.

Mots-clés : test de compétence, assurance qualité, sonde, première session de G-sonde, TB-1, verre basaltique, laboratoire d'analyse par microsonde.

In assessing the performance of laboratories involved in the routine bulk analysis of silicate rocks, the GeoPT proficiency testing programme has proven to be very effective (Thompson et al. 1996, 1998, 1999, 2000a, b, Potts et al. 2000a, b, 2001a, b, 2002). At the time of writing, ten rounds have been completed, with up to eighty laboratories from over twenty countries participating in each round. However, to date, there has never been an attempt to organise an equivalent proficiency testing round for microprobe laboratories. In some respects, this is not surprising, because of the additional difficulties involved. In particular, microprobe laboratories usually analyse a range of different mineral types, and there are many difficulties in selecting a material with a proven homogeneity that is available in sufficient quantities for distribution to participating laboratories. There are additional difficulties in the assessment of results, especially in deriving the assigned value (the best estimate of the true composition of the sample) and in deciding the target precision against which analytical results should be judged.

This paper presents the results of the first proficiency test for microprobe laboratories. As with all proficiency testing schemes, the overall aim was to present results that will permit participating laboratories to evaluate the quality of their data and, if relevant, identify determinations that may be affected by unsuspected analytical bias. However, in addition, the results have been evaluated to develop procedures relevant to this type of proficiency testing scheme and an opportunity has been taken to comment on the overall performance of microprobe laboratories.

Aims of proficiency testing

Proficiency testing is designed to be part of the routine quality assurance scheme of all analytical laboratories. In general, the trial involves distributing a sample of established homogeneity to participating laboratories, which are required to analyse the sample using a well-characterised technique or techniques operated under routine analytical conditions. Results are then tabulated by the organisers and z-scores calculated by comparing each submitted analysis with the value assigned to be the best estimate of the true composition. By examining the magnitude of the z-score, participating laboratories can decide whether the quality of their data is satisfactory in relation to both relevant fitness-for-purpose criteria and results submitted by all the other laboratories contributing to the round, and choose to take corrective action if this appears justified.

Since this is the first attempt to undertake a proficiency testing round for mineralogical microprobe laboratories, one of the aims of this work was to develop conventions for conducting this proficiency test that can be adopted as the standard procedure for future rounds.

Experimental procedures

Steering committee for Round 1

M. Thompson (Chair), P.J. Potts (Secretary) and S. Wilson.

Sample

Although consideration was given to the selection and distribution of a natural mineral, this approach was rejected for a number of reasons. One was the difficulty of finding a mineral with the confidence that it was homogeneous and free of inclusions over the quantity required for distribution to participating laboratories. The second was that to ensure participation by the widest number of microprobe laboratories, a silicate mineral was required and further, one which contained as many major elements as possible, together with a range of trace elements at levels analysable by the LA-ICP-MS and ion probe techniques. These considerations led to the selection of a basaltic glass, synthesised by fusing and quenching a natural basalt, where homogeneity would be attained by adequate crushing and mixing of the source material, together with the beneficial effects of the fusion process. The G-Probe-1 sample was a fused basalt, designated TB-1, prepared at the USGS by well established procedures. After preparation, the resultant glass was crushed into fragments. The coarse fragments were set aside for microprobe analysis, the finely divided material, produced at the same time, was reserved for bulk analysis (see below).

Objectives of the G-Probe-1 proficiency test and instructions to analysts

Microprobe analyses are undertaken for a number of reasons. In many studies, samples are prepared as polished thin sections, which are mounted in the microprobe to determine the compositions of various mineral assemblages, to characterise alteration or

Table 1. G-Probe-1 instructions to analysts

The G-Probe trial is designed to be an evaluation of the routine analytical capability of microprobe laboratories and to ensure that all laboratories operate to the same criteria, the task is to measure and report the average composition of the basaltic glass chip supplied for this study using a routine microprobe technique.

Please, therefore, follow the following procedure:

For each microprobe technique for which data are reported:

(1) Mount (and if appropriate polish) TWO glass chips in a form suitable for microprobe analysis. Avoid mounting for analysis any surface with an amorphous appearance as this surface may have been in contact with the platinum dish into which the molten sample was poured and chilled during the sample preparation process. Inhomogeneity effects have not been fully assessed for this contact layer.

(2) Analyse the mounted sample using routine microprobe conditions ("spot" mode is preferred) by averaging an appropriate number of individual measurements made over the surface of each sample. The number of individual measurements required is left to the discretion of the analysts, noting that the glass is expected to have excellent homogeneity.

(3) For each of the two samples analysed, report the average concentration of all elements that can be reliably determined together with the standard deviation on the enclosed form. Please, if possible, complete and submit results on the electronic version of this form, a copy of which can be obtained from "e.j.lomas@open.ac.uk" quoting "PLEASE SEND GeoPT-PROBE FORM".

(4) Also provide on this form details of the analytical technique used, including the number of individual determinations that contributed to the average, excitation conditions including probe diameter and any other relevant details.

(5) The preferred method of data submission is by returning the form as an attached file by e-mail to "p.j.potts@open.ac.uk". However, if this is not possible, copies of the form sent by post or by fax will be accepted.

(6) The deadline for the submission of results is 15th March 2001.

(7) Please return results to
by e-mail: p.j.potts@open.ac.uk
by fax: +44 1908 655151
by post P.J. Potts, Department of Earth Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
If results are sent by fax, please also post a copy by air mail as there are often problems with the quality of faxed information.

(8) Please check data carefully before transmission, as errors on the form cannot be corrected after submission (these are considered to be part of the analytical process).

(9) There is no charge for participation in this experimental round.

(10) Please check carefully all results before submission as transcription errors or use of incorrect units by the participating laboratory cannot be corrected by the organisers.

(11) Results reported as "not detected" or "less than" will be disregarded. DO NOT REPORT DETECTION LIMIT DATA.

zoning or to locate and analyse minor phases. In the G-Probe programme, the selected objective was to determine the average composition of two fragments of TB-1 supplied to participating laboratories. Laboratories were asked to mount and polish these fragments using their routine sample preparation procedures, and to select the most appropriate analytical strategy in terms of instrumental conditions and the number of individual determinations required to cover the surface of an individual fragment from which to determine the average composition. Laboratories were asked to report the average composition of each fragment, with standard deviation and number of individual determinations. Specific details of the "Instructions to Analysts" are listed in Table 1.

Timetable for G-Probe-1

Distribution of sample: Autumn 2000.

Deadline for submission of analytical results: 15th March 2001.

Distribution of preliminary report: March 2002.

Results

Submission of results

Results submitted by the thirty nine laboratories that participated in this round are listed in Table 2. Results listed include mean and standard deviations of determinations undertaken on individual fragments and the

Lab code				1A			2A				
Technique)		EPMA (15	kV, 20	nA, 15 μm)			EPMA (15	kV, 20	n A, 20 μm))
Number o	of points	Frag	ment 1 12	Frag	ment 2 12	Mean of 1+2	Frag	jment 1 6	Frag	ment 2 6	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
SiO_2 TiO_2 Al_2O_3 Fe_2O_3T $Fe_2(M)O$	% m/m % m/m % m/m % m/m	54.1 0.82 16.5 9.36	0.6 0.17 0.2 0.33	54.2 0.8 16.4 9.17	0.5 0.17 0.2 0.41	54.15 0.81 16.45 9.265	53.7 0.841 17.1 9.26	0.3 0.037 0.1 0.09	53.7 0.857 17 9.38	0.2 0.029 0.1 0.08	53.7 0.849 17.05 9.32
$\begin{array}{c} MnO\\ MgO\\ CaO\\ Na_2O\\ K_2O\\ P_2O_5\\ H_2O^+\\ CO_2 \end{array}$	% m/m % m/m % m/m % m/m % m/m % m/m % m/m	0.19 3.58 6.78 3.34 4.47 0.57	0.07 0.12 0.14 0.11 0.12 0.08	0.18 3.58 6.75 3.34 4.44 0.56	0.07 0.08 0.13 0.11 0.1 0.1 0.07	0.185 3.58 6.765 3.34 4.455 0.565	0.181 3.58 7.03 3.37 4.51 0.568	0.026 0.03 0.06 0.05 0.04 0.031	0.171 3.61 7.06 3.36 4.49 0.597	0.01 0.04 0.05 0.04 0.07 0.042	0.176 3.595 7.045 3.365 4.5 0.5825 -
Ag	mg kg-1	-	-	-	-	-	-	-	-	-	-
As Au B	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	-	-	-	-	-	-	-	-	-	-
Ba Be	mg kg ⁻¹ mg kg ⁻¹	-	-	-	-	-	0.042	0.018	0.065	0.021	0.0535
Bi Br	mg kg-1 mg kg-1	-	-	-	-	-	-	-	-	-	-
Cd Ce	mg kg-1 mg kg-1	-	-	-	-	-	-	-	-	-	-
Ci Co	mg kg-1 mg kg-1	-	-	-	-	-	-	-	-	-	-
Cr Cs	mg kg-1 mg kg-1	-	-	-	-	-	-	-	-	-	-
Cu Dy	mg kg-1 mg kg-1	-	-	-	-	-	-	-	-	-	-
Er Eu	mg kg-1 mg kg-1	-	-	-	-	-	-	-	-	-	-
F Ga	mg kg-1 ma ka-1	-	-	-	-	-	-	-	-	-	-
Gd	mg kg-1	-	-	-	-	-	-	-	-	-	-
Hf	mg kg-1	-	-	-	-	-	-	-	-	-	-
Ho	mg kg ⁻¹	-	-	-	-	-	-	-	-	-	-
In	mg kg-1	-	-	-	-	-	-	-	-	-	-
lr La	mg kg-1 mg kg-1	-	-	-	-	-	-	-	-	-	-
Li Lu	mg kg-1 mg kg-1	-	-	-	-	-	-	-	-	-	-
Mo N	mg kg-1 mg kg-1	-	-	-	-	-	-	-	-	-	-
Nb	mg kg-1	-	-	-	-	-	-	-	-	-	-
Ni	mg kg ⁻¹	-	-	-	-	-	-	-	-	-	-
Pb	mg kg ⁻¹	-	-	-	-	-	-	-	-	-	-
Pa Pr	mg kg-1	-	-	-	-	-	-	-	-	-	-
Pt Rb	mg kg-1 mg kg-1	-	-	-	-	-	-	-	-	-	-
Re Rh	mg kg-1 mg kg-1	-	-	-	-	-	-	-	-	-	-
Ru S	mg kg-1 ma ka-1	-	-	-	-	-	-	-	-	-	-
Sb	mg kg-1	-	-	-	-	-	-	-	-	-	-
Se	mg kg ⁻¹	-	-	-	-	-	-	-	-	-	-
Sn	mg kg-1	-	-	-	-	-	-	-	-	-	-
Sr Tạ	mg kg-1 mg kg-1	-	-	-	-	-	0.125	- 0.007	0.12	- 0.02	0.1225
Tb Te	mg kg-1 mg kg-1	-	-	-	-	-	-	-	-	-	-
Th Tl	mg kg-1 ma ka-1	-	-	-	-	-	-	-	-	-	-
Tm U	mg kg-1	-	-	-	-	-	-	-	-	-	-
Ň,	mg kg-1	-	-	-	-	-	0.022	0.012	0.019	0.006	0.0205
Y	mg kg-1	-	-	-	-	-	-	-	-	-	-
rb Zn Zr	mg kg-1 mg kg-1 mg kg-1	- - -		- -		- - -	- - -	-	- -		- -

Table 2 (continued).	
G-Probe-1 (TB-1 basaltic glass) - results submitted by participating la	aboratories

Lab code				3A			4A					
Technique	9		EPMA (20	kV, 20	nA, 25 μm)		EPMA (15 kV, 20 nA, 20 $\mu\text{m})$					
Number o	of points	Frag	ment 1	Frag	ment 2	Mean of 1+2	Frag	ment 1 24	Frag	ment 2 42	Mean of 1+2	
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation		
SiO_2 TiO_2 Al_2O_3 Fe_2O_3T $Fe_2(1)O$	% m/m % m/m % m/m % m/m	53.46 0.86 16.39	0.177 0.023 0.087	53.62 0.84 16.42	0.201 0.021 0.091	53.54 0.85 16.405	54.22 0.78 16.63	0.46 0.05 0.18	54.49 0.74 16.28	0.39 0.03 0.2	54.355 0.76 16.455	
$\begin{array}{c} MnO \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ H_2O^+ \\ CO_2 \end{array}$	% m/m % m/m % m/m % m/m % m/m % m/m % m/m	0.18 3.47 6.8 3.24 4.42 0.58 -	0.037 0.025 0.04 0.035 0.041 0.02 -	0.18 3.48 6.79 3.23 4.4 0.58	0.038 0.031 0.047 0.037 0.027 0.018 -	0.18 3.475 6.795 3.235 4.41 0.58	0.15 3.56 6.65 3.77 4.43 0.6 -	0.02 0.06 0.19 0.09 0.05 0.05 -	0.16 3.54 6.59 3.73 4.41 0.6	0.13 0.02 0.06 0.14 0.07 0.06 0.05 -	0.155 3.55 6.62 3.75 4.42 0.6	
҆҆҆҆҆҄ӯ҂҅Ӯ҅ӮҲҕҏҙҏҙѩҏҧҏҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧ												

Lab code				5A			6A					
Technique	9		ED-EPMA	(15 kV, s	5 nA, 2 μm)		EPMA (15	5 kV, 20 nA, 30 μm)			
Number	of points	Frag	ment 1 40	Frag	jment 2 40	Mean of 1+2	Frag	jment 1 10	Frag	ment 2 10	Mean of 1+2	
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation		
$\begin{array}{l} SiO_2 \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3T \\ Fe(II)O \\ MnO \\ MnO \\ CaO \\ Na_2O \\ K_2O \\ K_2O \\ F_2O_5 \\ H_2O^* \\ CO_2 \\ \end{array}$	% m/m % m/m % m/m % m/m % m/m % m/m % m/m % m/m % m/m % m/m	54.98 0.98 16.45 - - 8.4 0.14 3.46 6.84 2.56 4.34 0.54 -	0.214 0.059 0.104 - - - 0.147 0.069 0.083 0.085 0.064 0.054 0.069 - -	54.19 0.97 16.24 - - 8.3 0.14 3.42 6.77 2.56 4.3 0.54 - -	0.241 0.054 0.122 - - - 0.144 0.06 0.076 0.075 0.05 0.068 0.074 - -	54.585 0.975 16.345 - - 8.35 0.14 3.44 6.805 2.56 4.32 0.54 - -	54 0.89 16.33 - 8.18 0.17 3.54 6.81 3.05 4.3 - -	0.46 0.06 0.17 - - - 0.24 0.04 0.04 0.04 0.06 0.11 0.09 0.07 - -	53.98 0.91 16.39 - 8.3 0.17 3.48 6.87 3.11 4.28 - -	0.29 0.03 0.09 - - 0.19 0.06 0.06 0.06 0.08 - - -	53.99 0.9 16.36 - - 8.24 0.17 3.51 6.84 3.08 4.29 - -	
⋬⋧⋖⋽⋼⋬⋼⋼⋼⋳⋴⋳⋴⋳⋎⋳⋎⋴⋳∊⋬⋳⋼⋎⋤⋤⋨⋨⋧⋳⋤⋨⋤⋤⋤⋤⋤⋤⋤⋤⋤⋳⋶⋹∊⋶∊⋾⋺⋵⋳⋒⋒⋒⋼⋼⋳⋳⋳∊⋵⋳⋎⋳⋎⋻⋳⋳⋴⋹⋼⋼⋳⋴⋳⋴⋳∊	ਫ਼											

Lab code	•			7A		8A					
Techniqu	e	LA-HR-	ICP-MS (0.	5 mJ/pu	lse, 10 Hz	, 50 μm)		EPMA (15	kV, 20	nA, 10 μm)	
Number	of points	Fragr	nent 1 4	Fragi	ment 2 3	Mean of 1+2	Frag	gment 1 30	Frag	ment 2 30	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
$\begin{array}{c} \text{SiO}_2\\ \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Fe}_2\text{O}_3\text{T} \end{array}$	% m/m % m/m % m/m % m/m	- 0.939 - 8.77	0.018 - 0.22	- 0.95 - 8.75	- 0.01 - 0.095	- 0.9445 - 8.76	54.26 0.86 16.77 9.33	0.18 0.02 0.07 0.17	54.08 0.84 16.75 9.22	0.17 0.02 0.08 0.1	54.17 0.85 16.76 9.275
Fe(II)O MnO MgO CaO Ng ₂ O	% m/m % m/m % m/m % m/m	- 0.1822 4.039 7.941	- 0.0003 0.013 0.29	- 0.1839 3.976 7.51	- 0.0009 0.053 0.037	- 0.18305 4.0075 7.7255	- 0.17 3.48 6.81 3.36	- 0.02 0.03 0.05 0.04	- 0.18 3.61 6.8 3.36	- 0.02 0.04 0.04 0.05	- 0.175 3.545 6.805 3.36
$\begin{array}{c} K_2O\\ P_2O_5\\ H_2O^+\\ CO_2 \end{array}$	% m/m % m/m % m/m % m/m	4.59 - - -	0.052 - - -	4.604 - - -	0.062 - - -	4.597 - - -	4.46 0.57 -	0.04 0.03 - -	4.41 0.58 -	0.05 0.03 - -	4.435 0.575 -
Ag As Au	mg kg-1 mg kg-1 mg kg-1			- -	- -	- -					
B Ba Be Bi	mg kg-1 mg kg-1 mg kg-1 mg kg-1	1068 3.392	4.9 0.088 -	- 1077 2.926 -	4.6 0.061	1072.5 3.159					
Br Cd Ce Cl	mg kg-1 mg kg-1 mg kg-1 mg kg-1	105.8	0.55	- 106.7 -	0.54	106.25					
Co Cr Cs	mg kg-1 mg kg-1 ma ka-1	22.59 62.69	0.27	22.61 63.43	0.036 0.77	22.6 63.06					
Cu Dy Er Eu F	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	61.02 5.035 2.696 2.009	1.05 0.025 0.022 0.0053	58.65 4.613 2.495 1.953	0.76 0.0068 0.0029 0.0088	59.835 4.824 2.5955 1.981					
Ga Gd Ge Hf	mg kg-1 mg kg-1 mg kg-1 mg kg-1	6.097 1.644 5.714	0.048 0.016 0.046	5.704 1.645 5.135	0.056 0.017 0.047	5.9005 1.6445 5.4245					
Hg Ho I In	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	0.9503 -	0.0054 -	0.8704 - -	0.0056 - -	0.91035 -					
La Li Lu Mo	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	52.25 23.47 0.4049	0.29 0.27 0.0043	50.65 22.76 0.3696	0.27 0.18 0.0042	51.45 23.115 0.38725					
N Nd Ni Os	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	32.58 44.88 15.52	0.15 0.21 0.2	33.05 43.37 15.54	0.25 0.2 0.099	32.815 44.125 15.53					
Pb Pd Pr	mg kg-1 mg kg-1 ma ka-1	- 11.64	- 0.041	- 11.55	- 0.09	- 11.595					
Pt Rb Po	mg kg-1 mg kg-1	145.3	1.5	147	- 1.8	146.15					
Rh Ru	mg kg ⁻¹ mg kg ⁻¹	-	-	-	-						
S Sb Sc Se	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	0.71 23.92	0.0055 0.15	- 0.6947 22.77	0.0066 0.28	0.70235 23.345					
Sm Sn Sr Ta Tb	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	8.075 1.577 1660 1.646 0.8216	0.035 0.0038 5.4 0.012 0.0033	7.711 1.59 1676 1.589 0.7534	0.055 0.0097 13 0.0065 0.0077	7.893 1.5835 1668 1.6175 0.7875					
Te Th Tl	mg kg-1 mg kg-1	16.13	0.15	15.1	0.095	15.615					
Tm U V W Yb Zn Zr	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	0.3999 4.306 177.1 1.375 26.71 2.859 106.3 246	0.0016 0.024 4 0.0041 0.17 0.013 1.3 2.1	0.3676 4.298 182.6 1.386 24.86 2.69 112.7 226.9	0.0034 0.035 1.5 0.0029 0.18 0.025 1.6 1.4	0.38375 4.302 179.85 1.3805 25.785 2.7745 109.5 236.45					

Lab code				9A			10A					
Technique	9	Ion Pro	obe (25 nA	oxygen	at 10 kV, 3	30 μm)		EPMA (1	5 kV, 20 n	A, 20 μm)		
Number o	of points	Frag	ment 1 11	Frag	ment 2 6	Mean of 1+2	Frag	ment 1 15	Fragn 1	nent 2 5	Mean of 1+2	
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation		
SiO_2 TiO_2 Al_2O_3 Fe_2O_3T $Fe_2(1)O$	% m/m % m/m % m/m % m/m	54.7 0.85 16.53 -	0.37 0.08 0.19 -	53.8 0.84 16.45 -	0.32 0.06 0.18 -	54.25 0.845 16.49 -	53.0492 0.831467 16.3466 9.163191	0.512223 0.056009 0.140649 0.181086	53.54747 0.8532 16.42807 9.164672	0.56036 0.032392 0.148869 0.178157	53.29833 0.842333 16.38733 9.163932	
MnO MgO CaO Na_2O K_2O P_2O_5 H_2O^+ CO_2	% m/m % m/m % m/m % m/m % m/m % m/m % m/m	0.16 3.58 6.77 3.29 4.41	0.05 0.09 0.1 0.09 0.08 -	0.17 3.59 6.79 3.3 4.44	0.09 0.11 0.14 0.13 0.11 -	0.165 3.585 6.78 3.295 4.425 -	0.157333 3.4904 6.8726 3.264667 4.377333 0.765733	0.034861 0.057412 0.090161 0.067598 0.056489 0.093303	0.154867 3.479667 6.896 3.3088 4.4552 0.790533	0.035652 0.047538 0.07116 0.050143 0.06882 0.077269	0.1561 3.485033 6.8843 3.286733 4.416267 0.778133	
Ag	mg kg-1	-	-	-	-		-		-		-	
As Au B	mg kg ⁻¹ mg kg ⁻¹	-	-	-	-	-						
Ba Be	mg kg ⁻¹ mg kg ⁻¹	-	-	-	-	-						
Bi Br	mg kg-1 mg kg-1	-	-	-	-	-						
Cd Ce Cl	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	90.3	1.75	88.94	3.53	89.62						
Co Cr	mg kg ⁻¹ mg kg ⁻¹	-	-	-	-	-						
Cs Cu	mg kg-1 mg kg-1	-	-	-	-	-						
Dy Er Eu F	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	3.84 2.88 1.42	0.46 0.15 0.18	3.36 2.75 1.86	0.64 0.13 0.08	3.6 2.815 1.64						
Ga Gd	mg kg-1 mg kg-1	5.24	0.67	4.47	0.74	4.855						
Hf Ha	mg kg ⁻¹ mg kg ⁻¹	-	-	-	-	-						
Hŏ I	mg kg-1 mg kg-1		-	-	-	-						
ln Ir	mg kg-1 mg kg-1	-	-	-	-	-						
La Li	mg kg-1 mg kg-1	43.1/	0.83	43.33	0.57	43.25						
LU Mo	mg kg ⁻¹ mg kg-1	- 0.35	- 0.02	- 0.34		0.345						
Nb Nd	mg kg ⁻¹ mg kg ⁻¹	31.24 39.3	1.18 0.8	31.14 38.74	0.4 0.48	31.19 39.02						
Ni Os	mg kg-1 mg kg-1	-		-		-						
Pb Pd	mg kg-1 mg kg-1	-	-	-	-	-						
Pr Pt Rh	mg kg ⁻¹ mg kg ⁻¹	-	0.22	-	-	-						
Re Rh	mg kg-1 ma ka-1	-	-	-	-	-						
Ru S	mg kg ⁻¹ mg kg ⁻¹	-	-	-	-	-						
Sb Sc	mg kg-1 mg kg-1	26.84	0.88	- 27.05	0.64	26.945						
Se Sm	mg kg-1 mg kg-1	7.39	0.43	- 7.53	0.25	- 7.46						
Sn Sr Ta	mg kg ⁻¹ mg kg ⁻¹	1398.34	74.65	1386.66	80.55	1392.5						
Tb Te	mg kg ⁻¹	-	-	-	-	-						
Th Tl	mg kg ⁻¹ mg kg ⁻¹	-	-	-	-	-						
Tm U	mg kg ⁻¹ mg kg ⁻¹	-	-	-	-	-						
¥ W	mg kg-1 mg kg-1	180.59	5.23	180.2	4.67	180.395						
Y Yb Za	mg kg ⁻¹ mg kg ⁻¹	24.41 2.96	0.56 0.35	23.85 3.01	0.72 0.29	24.13 2.985						
∠n Zr	mg kg-1 mg kg-1	239.53	3.84	235.63	5.66	237.58						

Table 2 (continued).	
G-Probe-1 (TB-1 basaltic glass) - results submitted by participating laborat	ories

Lab code				11A			12A				
Technique	e	ED-SE/	M (15 kV, 0	.6 nA (s	pecimen), ().1 μm)		EPMA (15	kV, 10 r	n <mark>A, 20</mark> μm)	
Number o	of points	Frag	ment 1 10	Frag	jment 2 10	Mean of 1+2	Frag	ment 1 10	Frag	ment 2 10	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
$\begin{array}{l} SiO_{2} \\ TiO_{2} \\ AI_{2}O_{3} \\ Fe_{2}O_{3}T \\ Fe(II)O \\ MnO \\ MgO \\ CaO \\ Na_{2}O \\ K_{2}O \\ P_{2}O_{5} \\ H_{2}O^{+} \\ CO_{2} \end{array}$	% m/m % m/m	55.63 0.77 16.91 7.7 - 3.66 6.75 - 4.96 - -	0.22 0.05 0.27 0.27 - 0.12 0.13 0.09 - -	55.45 0.85 16.59 7.87 - - 3.45 6.94 4.84 - - -	0.3 0.06 0.16 0.13 - - 0.21 0.07 0.05 - - -	55.54 0.81 16.75 7.785 - 3.555 6.845 4.9 - -	53.82 0.839 16.32 - - 8.303 0.193 3.64 6.821 3.34 4.29 0.651 - -	0.099 0.025 0.097 - 0.106 0.0132 0.044 0.049 0.135 0.199 0.0217 - -	54.32 0.839 16.53 - 8.463 0.164 3.57 6.825 3.32 4.32 0.651 -	0.067 0.0144 0.0404 - 0.102 0.0184 0.059 0.101 0.104 0.0744 0.0452 - -	54.07 0.839 16.425 - - 8.383 0.1785 3.605 6.823 3.33 4.305 0.651 - -
Ŕġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġ							50.9	6.5	50.5	8.3	50.7

Lab code				13A			14A				
Techniqu	e		EPMA (15	kV, 40	n A, 10 μm)			ED-SEM (2	0 kV, 2	nA, 10 μm)	
Number	of points	Frag	ment 1 20	Frag	ment 2 20	Mean of 1+2	Frag	ment 1 4	Frag	ment 2 4	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
$ \begin{array}{c} \text{SiO}_2 \\ \text{TiO}_2 \\ \text{Al}_2\text{O}_3 \\ \text{Fe}_2\text{O}_3\text{T} \end{array} $	% m/m % m/m % m/m % m/m	54.09 0.92 17.15 -	0.2 0.02 0.13	54.2 0.91 17.15	0.29 0.02 0.16	54.145 0.915 17.15 -	53.78 0.83 16.42 9.32	0.2 5 0.8 1	54.11 0.86 16.29 9.31	0.2 5 0.8 1	53.945 0.845 16.355 9.315
$\begin{array}{l} Fe(II)O \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ H_2O^+ \\ CO_2 \end{array}$	% m/m % m/m % m/m % m/m % m/m % m/m % m/m % m/m	8.36 0.18 3.71 6.7 3.33 4.51 0.66	0.13 0.03 0.06 0.06 0.06 0.05 0.06 -	8.37 0.18 3.7 6.69 3.33 4.56 0.68	0.11 0.02 0.06 0.09 0.05 0.03 0.04	8.365 0.18 3.705 6.695 3.33 4.535 0.67 -	0.16 3.55 6.81 3.32 4.62 0.49	25 2 0.9 3 2 1.7 -	0.15 3.64 6.82 3.31 4.61 0.46	25 2 0.9 3 2 1.7 -	0.155 3.595 6.815 3.315 4.615 0.475
Ag As Au B Ba	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹		- - - 13.8	- - - 826	- - - 13.6						
Be Bi Br Cd Ce Cl Co Cr Cs	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	83.7	- - - 1.81 - - -	80.7	- - 1.65 - -	82.2					
Cu Dy Er Eu F	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	4.4 2.47 1.82	0.21 0.16 0.08	4.22 2.37 1.78	0.19 0.16 0.07	4.31 2.42 1.8					
Gd Ge Hf Hg Ho	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	5.46 5.62 0.92	0.23 0.22 0.05	5.25 5.45 0.88	0.18 0.19 0.04	5.355 5.535 0.9					
I In Ir La Li Lu	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	45.8 0.35	- 1.38 0.03	- 44.2 0.34	0.77 0.04	45 0.345					
No Nb Nd Ni Os	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	24 38.6 13.7	0.44 0.75 1.12	22.8 36.9 13.41	0.48 0.59 1.15	23.4 37.75 13.555					
Pb Pd Pr Pt Rb Re	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	9.52 130	0.24	9.09	0.34 0.15 2.35	9.305 126.5					
Rh Ru S Sb Sc Sc	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1		- - - 0.67	- - 19	- - 0.45	- - - 19.25					
Sm Sn Sr Ta Tb	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	7.24 1301 1.15 0.78	0.27 22.3 0.05 0.04	6.87 1247 1.14 0.73	0.19 19.2 0.05 0.05	7.055 1274 1.145 0.755					
Th Th TI Tm U V	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	14.5 0.36 3.95	0.4 0.03 0.17	14 0.35 3.75	0.24 0.03 0.1	14.25 0.355 3.85					
W Y Yb Zn Zr	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	23.5 2.56 232	0.92 0.16 7.72	23 2.62 225	0.5 0.13 4.18	23.25 2.59 228.5					

Lab code				15A					16A		
Technique	e		EPMA (20	nA, 10 μm)		EPMA (15 kV, 20 nA, 3 μm)					
Number	of points	Frag	ment 1 4	Frag	jment 2 4	Mean of 1+2	Frag	ment 1 10	Frag	ment 2 10	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
$\begin{array}{c} \text{SiO}_2 \\ \text{TiO}_2 \\ \text{Al}_2\text{O}_3 \\ \text{Fe}_2\text{O}_3\text{T} \\ \text{Fe}(1)\text{O} \\ \text{MnO} \\ \text{MgO} \\ \text{CaO} \\ \text{Na}_2\text{O} \\ \text{Na}_2\text{O} \\ \text{K}_2\text{O} \\ \text{P}_2\text{O}_5 \\ \text{H}_2\text{O}^+ \\ \text{CO}_2 \end{array}$	% m/m % m/m % m/m % m/m % m/m % m/m % m/m % m/m % m/m % m/m	54.11 0.84 16.54 8.75 - 0.09 3.62 6.81 3.46 4.56 0.45 - -	0.29 0.57 0.62 0.6 - 20.63 0.85 0.26 1.39 0.54 3.91 - -	54.23 0.84 16.62 8.69 - 0.09 3.58 3.78 3.42 4.55 0.45 -	0.29 0.57 0.62 0.6 - 20.63 0.85 0.26 1.39 0.54 3.91 - -	54.17 0.84 16.58 8.72 - 0.09 3.6 5.295 3.44 4.555 0.45 - -	54.11 0.82 16.53 9.31 - 0.2 3.49 6.92 3.05 4.5 0.55 -	0.21 0.02 0.1 0.05 0.03 0.1 0.07 0.05 0.09 -	54.22 0.84 16.5 9.29 - 0.16 3.46 6.95 3.02 4.51 0.58 -	0.33 0.07 0.11 0.21 - - 0.03 0.05 0.04 0.06 0.1 0.04 - -	54.165 0.83 16.515 9.3 - 0.18 3.475 6.935 3.035 4.505 0.565 -
Ҽӑ҂ӡѿҏҏҏѿҏҧҏҧѵӎҏҏҏѿҏҧҏҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧҧ	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	0		0		0			-		-

Lab code	e 17A 18A										
Technique	9		EPMA (15	kV, 25	nA, 8 μm)			ED-SEM (1	5 kV, 3	nA, 1 μm)	
Number o	of points	Frag	ment 1 12	Frag	jment 2 12	Mean of 1+2	Frag	ment 1 98	Frag	ment 2	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
$ \begin{array}{c} \text{SiO}_2 \\ \text{TiO}_2 \\ \text{Al}_2\text{O}_3 \\ \text{Fe}_2\text{O}_3\text{T} \\ \text{Fe}(\text{II})\text{O} \end{array} $	% m/m % m/m % m/m % m/m	54.2 0.86 17.01 9.34	0.11 0.04 0.09 0.13	54.21 0.87 17 9.34	0.11 0.03 0.06 0.14	54.205 0.865 17.005 9.34	53.5 0.9 16.39 9.24	0.25 0.09 0.12 0.21			53.5 0.9 16.39 9.24
$\begin{array}{c} MnO \\ MgO \\ CaO \\ Na_{2}O \\ K_{2}O \\ P_{2}O_{5} \\ H_{2}O^{+} \\ CO_{2} \\ Ag \\ As \\ Au \\ B \end{array}$	% m/m % m/m % m/m % m/m % m/m % m/m % m/m	0.19 3.56 6.89 3.14 4.62 0.62 -	0.04 0.05 0.06 0.05 0.08 0.06 -	0.18 3.58 6.92 3.15 4.61 0.57 -	0.04 0.03 0.08 0.03 0.03 0.07 -	0.185 3.57 6.905 3.145 4.615 0.595 - -	0.14 3.54 6.62 3.16 4.57 0.52 -	0.07 0.06 0.08 0.09 0.08 0.08 -			0.14 3.54 6.62 3.16 4.57 0.52 -
҆҆҆҆҆҆҄Ҙѧ҄҂ѧѩҩѩӹӹҀѺ҆҇҇҇҇҇ҀѼҀѵѷѽӮӹӹӊҨ҄Ҩ҇Ҩ҄Ҥ҃Ӈӈ҄҆҆҄ҧҽ҆ҧӀѧӹӀѽҲ҄҅ӮӮ҄ӮӮӮӮӱѽҎ҄ҥ҄ҥҟӝҝҟӝӽѽӽҫѕҕҕӽҧӵӈѥ҉ҤӖ҄҄҄҄ѡ҇҂Ӿѵҋӆҡ	ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼										

Lab code				19A			20A				
Technique	e	EPMA (15 kV, 6 nA, 1 μm)						EPMA (15	kV, 20	nA, 5 μm)	
Number o	of points	Frag	ment 1 50	Frag	jment 2 50	Mean of 1+2	Frag	ment 1 25	Frag	ment 2 25	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
SiO_2 TiO_2 Al_2O_3 Fe_2O_3T $Fe(II)O$	% m/m % m/m % m/m % m/m	52.98 2.28 13.07 12.42	0.42 0.07 0.14 0.22	53.36 2.27 13.1 12.51	0.59 0.07 0.14 0.29	53.17 2.275 13.085 12.465	53.7 0.84 16.56 9.2	0.25 0.04 0.1 0.16	53.59 0.84 16.61 9.19	0.24 0.04 0.1 0.22	53.645 0.84 16.585 9.195
$\begin{array}{c} MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ H_2O^+ \\ CO_2 \end{array}$	% m/m % m/m % m/m % m/m % m/m % m/m % m/m	0.19 3.42 6.99 3.05 1.81 0.38 -	0.06 0.07 0.12 0.12 0.05 0.04	0.2 3.42 6.98 3.06 1.81 0.38 -	0.05 0.06 0.12 0.09 0.05 0.04 -	0.195 3.42 6.985 3.055 1.81 0.38 - -	0.18 3.55 6.8 3.27 4.37 0.6 -	0.03 0.05 0.08 0.05 0.05 0.06 -	0.18 3.52 6.79 3.25 4.34 0.57	0.04 0.05 0.06 0.06 0.07 0.06 -	0.18 3.535 6.795 3.26 4.355 0.585 - -
౸Ѧӑҏҏҏҏӹҏ҇ѼѼѼѼѽҧӹҧӄѽѼӪ҄Ҥ҉Ҥ҄Ӭ҄҆҆҄ҧӡҧӷҏӹӡҲ҄҅ӮѮӮӰѼѽҏ҄ҏ҅ҡҭѭ҇ҝҟ҄҂ӽѽѵӽҕҕ҉ҧҧ҅ҏҧ҉ҤӶ҃҄҅҄҄҄҄҄҄Ӭ҂ӋѽҲ҅	ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼ਗ਼ਫ਼										

Lab code		21A 22A									
Technique	e		EPMA (15	kV, 20 r	nA, 10 μm)			EPMA (20	kV, 25 r	n Α, 20 μm)	
Number	of points	Frag	ment 1 80	Frag	jment 2 80	Mean of 1+2	Frag	ment 1 25	Frag	ment 2 25	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
$\begin{array}{l} SiO_{2} \\ TiO_{2} \\ AI_{2}O_{3} \\ Fe_{2}O_{3}T \\ Fe(II)O \\ MnO \\ MgO \\ CaO \\ Na_{2}O \\ K_{2}O \\ K_{2}O \\ F_{2}O_{5} \\ H_{2}O^{+} \\ CO_{2} \end{array}$	% m/m % m/m	53.94 0.83 16.33 8.86 - 0.18 3.58 6.71 3.25 4.23 - -	0.15 0.03 0.09 0.16 - - 0.02 0.03 0.06 0.09 0.05 - -	53.80 0.84 16.28 8.94 - - 0.18 3.57 6.69 3.23 4.21 - - -	0.16 0.03 0.07 0.14 - - 0.03 0.03 0.06 0.04 0.05 - - -	53.87 0.835 16.305 8.9 - 0.18 3.575 6.7 3.24 4.22 - -	53.4 0.87 15.95 9.21 - 0.19 3.58 6.76 3.4 4.59 0.58 - -	0.56 0.03 0.22 0.12 - - - 0.02 0.05 0.04 0.04 0.04 0.04 - -	53.86 0.87 16.12 9.16 - - 0.19 3.53 6.74 3.4 4.58 0.58 - -	0.31 0.03 0.24 0.11 - - 0.02 0.07 0.06 0.06 0.05 0.04 -	53.63 0.87 16.035 9.185 - 0.19 3.555 6.75 3.4 4.585 0.58 - -
₽₩₽×₹×€×€×₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽											

Lab code				23A			24A				
Techniqu	e		EPMA (15	cV, 20 n	Α, 2-4 μm)		LA-ICP-	MS (213 nm	n, 0.25 n	nJ/p, 10 Hz	z, 30 μm)
Number	of points	Frag	ment 1 20	Frag	jment 2 20	Mean of 1+2	Frag	ment 1 5	Frag	ment 2 5	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
$ \begin{array}{c} \text{SiO}_2 \\ \text{TiO}_2 \\ \text{Al}_2\text{O}_3 \\ \text{Fe}_2\text{O}_3\text{T} \\ \text{Fe}(\text{II})\text{O} \end{array} $	% m/m % m/m % m/m % m/m % m/m	54.76 0.84 17.06 9.35	0.36 0.06 0.22 0.19	54.63 0.82 16.87 9.12	0.39 0.04 0.26 0.22	54.695 0.83 16.965 9.235					
$MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5$	% m/m % m/m % m/m % m/m % m/m % m/m	0.19 3.46 6.78 2.99 4.32	0.06 0.07 0.11 0.17 0.07	0.2 3.45 6.75 2.98 4.31	0.04 0.09 0.18 0.16 0.08	0.195 3.455 6.765 2.985 4.315					
H_2O^+ CO_2	% m/m % m/m	-	-	-	-	-					
Ag As Au B	mg kg-1 mg kg-1 mg kg-1 mg kg-1			- - -		- -					- - -
Ba Be Bi	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹		-	-	-	-	3.67	0.42	4.03	0.41	3.85
Cd Ce Cl	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	-	-	-		-	77.86	0.57	78.43	1.38	78.145
Co Cr Cs Cu	mg kg-1 mg kg-1 mg kg-1 mg kg-1		-	-		-	2.32	0.28	2.37	0.14	2.345
Dy Er Eu F	mg kg-1 mg kg-1 mg kg-1 mg kg-1						4.79 2.67 1.79 -	0.16 0.12 0.03	4./1 2.64 1.73 -	0.13 0.11 0.07	4.75 2.655 1.76
Ga Gd Ge Hf	mg kg-1 mg kg-1 mg kg-1 mg kg-1	- - -					5.93 5.79	0.26	5.83 - 5.47	0.23 0.17	5.88 5.63
Hg Ho I In	mg kg-1 mg kg-1 mg kg-1 mg kg-1 ma kg-1				- - -		0.94 -	0.03	0.93 - -	0.04	0.935
Ir La Li Lu Mo	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1		- - - -		- - - - -	- - - -	43.32 19.23 0.42 1.45	0.37 0.48 0.02 0.09	42.7 19.03 0.43 1.5	0.93 0.86 0.04 0.1	43.01 19.13 0.425 1.475
Nb Nd Ni	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	-	-	-		-	28.66 40.18 13.16	0.19 0.99 1.1	28.97 39.4 13.6	0.37 0.38 1.01	28.815 39.79 13.38
Pb Pd Pr	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	-	-	-	-	-	9.85	0.2	10.35 9.7	1.02 0.18	10.1
Pt Rb Re	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹			- -		- -	104.06	0.85	108.08	6.98	106.07
Rh Ru S	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹		-	-	-			-			
Sc Se Sm	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹			- -		- -	23.97 - 7.41	0.58 0.23	23.87 - 7.02	0.81 0.29	23.92 7.215
Sn Sr Ta Tb	mg kg-1 mg kg-1 mg kg-1 mg kg-1				- - - -		- 1272.8 1.58 0.79	12.4 0.04 0.02	- 1280.6 1.52 0.78	25.3 0.05 0.03	- 1276.7 1.55 0.785
Te Th Tl	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹		-	- -		- -	14.86	0.18	14.12	0.63	14.49
Tm U V W	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	- - -			- - -		0.39 3.17 155.76	0.03 0.05 2.45	0.38 3.24 161.53	0.03 0.23 7.3	0.385 3.205 158.645
Y Yb Zn Zr	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	- - - -			- - - -	- - -	26.2 2.82 72.97 238.33	0.24 0.13 1.14 3.05	25.52 2.64 76.62 233.15	0.74 0.15 8.41 5.77	25.86 2.73 74.795 235.74

Lab code		25A					26A				
Technique	е		EPMA (15	kV, 10	n Α, 2 μm)			LA-ICP-MS	(12 J cn	n-2, 60 μm)	
Number	of points	Frag	ment 1 20	Frag	iment 2 20	Mean of 1+2	Frag	ment 1 8	Frag	ment 2 24	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
SiO_2 TiO_2 Al_2O_3 Fe_2O_3T	% m/m % m/m % m/m % m/m	53.12 0.82 16.62	0.29 0.05 0.12	53.12 0.83 16.62	0.22 0.04 0.13	53.12 0.825 16.62	- 0.8 -	- 0.01 -	- 0.78 -	- 0.01 -	- 0.79 -
Fe(II)O MnO MgO CaO Na ₂ O	% m/m % m/m % m/m % m/m % m/m	8.8 0.19 3.44 6.69 3.3	0.17 0.05 0.06 0.08 0.14	8.85 0.19 3.4 6.68 3.3	0.16 0.04 0.07 0.06 0.09	8.825 0.19 3.42 6.685 3.3	- 0.18 3.67 std 3.55	0.01 0.1 - 0.1	0.18 3.59 std 3.4	0.01 0.1 - 0.1	- 0.18 3.63 - 3.475
$K_2O = P_2O_5 = H_2O^+ = CO_2$	% m/m % m/m % m/m % m/m	4.46 0.59 - -	0.12 0.08 - -	4.5 0.62 - -	0.07 0.07 - -	4.48 0.605 - -				- - - -	
Ag As Au	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹			- -		- -	0.46	0.03 - -	0.56 - -	0.06 - -	0.51 - -
B Ba Be	mg kg-1 mg kg-1 mg kg-1					- - -	967	7	940 -	20	953.5 -
Br Cd Ce	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹		-	-			93	1	92	1	- - 92.5
Cl Co Cr Cs	mg kg-1 mg kg-1 mg kg-1 ma kg-1						26	0.6	24 2.9	- 1 - 0.2	25
Cu Dy Er Eu F	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	- - - 0.12	- - - 0.02	- - 0.12	- - - 0.02	- - 0.12	83 4.1 - 1.83	0.1 0.1	79 4.2 2.3 1.86	3 0.3 0.1 0.06	81 4.15 2.3 1.845
Ga Gd Ge	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹			- -		- -	5.2	0.2	5.2	0.3	5.2
Hg Ho I	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹			-			0.82	0.04	0.85 -	0.04	0.835
In Ir La Li Lu Mo	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1				- - - - - -		- 46 21.4 0.34	- 0.6 1.3 0.02	- - 19.1 0.36 1.9	- - 1 0.02 0.6	46 20.25 0.35 1.9
N Nd Ni	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1				- - - -	- - -	27.2 38.3 19.5	0.2 0.7 0.6	29 39.4 18	2 0.7 1	28.1 38.85 18.75
Pb Pd Pr	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ ma ka ⁻¹		-	-			18.2 9.97	0.6 0.08	17.6 10	0.7	17.9 9.985
Pt Rb Re	mg kg-1 mg kg-1 mg kg-1					- - -	167	5	160	6	163.5
Ru S Sb	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹			-							
Sc Se Sm	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹			- -		- -	- - 7	- 0.2	20.3 - 7.1	0.3 0.2	20.3 7.05
Sr Ta Tb	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹		-	-			1343 1.43 0.71	12 0.05 0.03	1357 1.46 0.75	18 0.07 0.04	1350 1.445 0.73
Te Th Tl Tm	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹		-				13.8 0.32	0.4	14.3	0.4	14.05
U V W Y	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹						4.5 201 1.62 22.1	0.02 0.2 2.4 0.14 0.3 0.2	188	- 6 - 0.8	4.5 194.5 1.62 22.9
Zn Zr	mg kg⁻¹ mg kg⁻¹ mg kg⁻¹		-				2.4 - 237	0.2 - 3	2.4 - 247	0.1 - 7	2.4 - 242

Table 2 (continued).
G-Probe-1 (TB-1 basaltic glass) - results submitted by participating laboratories

Lab code				27A					28A		
Techniqu	e		EPMA (15	kV, 40 r	iA, 20 μm)			LA-ICP-MS	(0.22 mJ	<mark>l/p, 30</mark> μm)
Number	of points	Frag	ment 1 10	Frag	jment 2 10	Mean of 1+2	Frag	ment 1 9	Frag	ment 2 6	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
SiO_2 TiO_2 Al_2O_3 Fe_2O_3T $Fe(11)O$	% m/m % m/m % m/m % m/m	53.7 0.85 16.3 9.12	0.41 0.018 0.09 0.082	53.7 0.88 16.4 9.12	0.48 0.011 0.06 0.095	53.7 0.865 16.35 9.12					
$\begin{array}{c} MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ H_2O^+ \end{array}$	% m/m % m/m % m/m % m/m % m/m % m/m	0.19 3.51 6.92 3.26 4.46 0.58	0.027 0.028 0.029 0.024 0.085 0.034	0.17 3.53 6.9 3.29 4.46 0.61	0.023 0.041 0.084 0.023 0.095 0.033	0.18 3.52 6.91 3.275 4.46 0.595					
CO ₂	% m/m	-	-	-	-	-					
Ag As Au B Ba	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹			- - 1130			- - - 929				
Be Bi	mg kg-1 mg kg-1	-	-	-	-	-	-		-	-	-
Br Cd Ce Cl	mg kg-1 mg kg-1 mg kg-1 mg kg-1				- - - -	- - - -	- - 84.4	- 2.29	- 86.1	2.16	85.25
Co Cr	mg kg-1 mg kg-1	-	-	-	-	-		-	-	-	-
Cs Cu	mg kg ⁻¹	-	-	-	-	-	-	-	-	-	-
Dy Er Eu F	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹						4.57 2.73 1.92 -	0.381 0.204 0.0909	4.95 2.84 2 -	0.483 0.166 0.12	4.76 2.785 1.96
Ga Gd	mg kg-1 mg kg-1	-	-	-	-	-	5.8	0.212	5.81	0.545	5.805
Ge Hf	mg kg ⁻¹	-	-	-	-	-	6.1	0.426	6.51	0.215	6.305
Hg Ho	mg kg ⁻¹	-	-	-	-	-	0.944	0.0788	1.01	0.0336	0.977
In In	mg kg ⁻¹	-	-	-	-	-	-	-	-	-	-
La	mg kg ⁻¹	-	-	-	-	-	49.7	0.492	50	1.42	49.85
Lu	mg kg ⁻¹			-		-	0.421	0.0444	0.456	0.0341	0.4385
N	mg kg ⁻¹	-	-	-	-	-	23.9	- 0.45	23.9	- 0.596	23.9
Nd Ni	mg kg ⁻¹	-	-	-	-	-	42.2	1.48	42.9	1.82	42.55
Os Pb	mg kg ⁻¹ ma ka ⁻¹	-	-	-	-	-	-	-	-	-	-
Pd Pr	mg kg-1 ma ka-1	-	-	-	-	-	10.6	- 0.276	10.6	- 0.455	10.6
Pt Rb	mg kg⁻¹ mg kg⁻¹	-	-	-	-	-	-	-	-	-	
Re Rh	mg kg ⁻¹ mg kg ⁻¹	-	-	-	-	-	-	-	-	-	-
Ru S	mg kg⁻¹ mg kg⁻¹	-	-	-	-	-	-	-	-	-	
Sb Sc	mg kg-1 mg kg-1	-	-		-	-	20.8	1.1	20.9	0.979	20.85
Se Sm	mg kg ⁻¹ mg kg ⁻¹	-	-		-	-	7.72	0.653	7.89	0.544	7.805
Sn Sr Ta Tb	mg kg-1 mg kg-1 mg kg-1 ma kg-1	1181	156	1188	153	1184.5	- 1330 1.25 0.872	- 15.3 0.0467 0.108	- 1329 1.33 0.886	29 0.0322 0.0888	- 1329.5 1.29 0.879
Te Th	mg kg-1 ma ka-1	-	-	-	-	-	15.8	0.68	16.5	0.729	16.15
Tl Tm	mg kg-1 ma ka-1	-	-	-	-	-	0.372	0.0531	0.36	0.0133	0.366
U V	mg kg-1 mg kg-1	-	-	-	-	-	3.78	0.318	3.64	0.466	3.71
W Y	mg kg-1 ma ka-1	-	-	-	-	-	24.8	0.63	24.4	0.931	24.6
Yb Zn	mg kg ⁻¹ mg kg ⁻¹	-	-	-	-	-	2.79	0.207	2.85	0.122	2.82
Zr	l mg kg-1	124	62	176	63	150	238	4.08	232	7.59	235

Lab code	le 29A					30A					
Technique	9		EPMA (15	kV, 20 r	nA, 10 μm)			ED-SEM (1	5 kV, 5 r	nA, 1.3 μm)	
Number	of points	Frag	ment 1 30	Frag	jment 2 60	Mean of 1+2	Frag	ment 1 8	Frag	ment 2 8	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
SiO_2 TiO_2 Al_2O_3 Fe_2O_3T $Fe(II)O$	% m/m % m/m % m/m % m/m	53.29 0.86 16.52 - 8.29	0.18 0.03 0.07 - 0.07	53.59 0.86 16.51 - 8.3	0.16 0.03 0.08 - 0.07	53.44 0.86 16.515 - 8.295	53.23 0.88 15.99 8.88	0.07 0.02 0.05 0.04	53.41 0.87 16.15 8.86	0.1 0.02 0.05 0.04	53.32 0.875 16.07 8.87
$\begin{array}{l} MnO \\ MgO \\ CaO \\ Na_{2}O \\ K_{2}O \\ H_{2}O_{5} \\ H_{2}O^{+} \\ CO_{2} \end{array}$	% m/m % m/m % m/m % m/m % m/m % m/m % m/m	0.18 3.53 6.85 3.15 4.35 0.57 -	0.02 0.04 0.08 0.04 0.04 0.03 -	0.18 3.53 6.84 3.15 4.36 0.57 -	0.02 0.03 0.06 0.05 0.05 0.04 -	0.18 3.53 6.845 3.15 4.355 0.57 - -	0.21 3.75 6.95 2.87 4.32 0.44 -	0.01 0.03 0.03 0.03 0.01 0.02 -	0.2 3.71 6.97 2.87 4.33 0.47 -	0.01 0.05 0.02 0.02 0.01 0.02 - -	0.205 3.73 6.96 2.87 4.325 0.455 - -
ݸݡݸݠݠݠݠݠݠݠݾݸݾݥݵݥݪݭݸݭݡݜݸݸݸݔݵݵݘݹݗݸݗݵݗݵݘݤݵݤݵݤݵݤݵݤݵݤݵݤݵݤݵݤݵݤݵݤݾݸݵݕݸݾݤݾݤݵݸݕݸݾݤݵݕݥݵݵ ݻݸݕݸݠݠݠݠݠݠݠݹݕݸݕݾݤݾݤݾݵݘݜݹݵݸݠݔݻݵݚݾݥݥݕݥݕݗݵݗݕݵݕݤݵݤݵݤݻݤݻݤݻݤݻݤݵݤݵݤݵݵݕݵݵݕݕݕݕݕݕݕݕݕݕݕ	a a a a a a a a a a a a a a a a a a a										

Lab code				31 A					32A			
Techniqu	e	E	D-SEM (20	kV, 50	nA, 0.5 μm)	LA-ICP-N	AS (15 J cm	1-2, 10 Hz	z, 193 nm,	120 μm)	
Number	of points	Frag	ment 1 5	Frag	jment 2 5	Mean of 1+2	Frag	ment 1 4	Frag	ment 2 4	Mean of 1+2	
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation		
$ \begin{array}{c} \text{SiO}_2\\ \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Fe}_2\text{O}_3\text{T}\\ \text{Fe}(\text{II})\text{O}\\ \text{MnO} \end{array} $	% m/m % m/m % m/m % m/m % m/m	54.3 0.9 17.5 - 8.1 0 1	0.2 0.1 0.2 - 0.1	54.2 0.9 17.3 - 8.4 0.1	0.2 0.1 0.1 - 0.2 0.1	54.25 0.9 17.4 - 8.25 0.1						
$MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ H_2O^+ \\ CO_2$	% m/m % m/m % m/m % m/m % m/m % m/m	3.7 6.8 3.1 4.5 0.5	0 0.1 0 0.1 0.1 0.1 -	3.7 6.8 3 4.5 0.5	0.1 0.1 0.1 0.1 0	3.7 6.8 3.05 4.5 0.5						
Ag As	mg kg ⁻¹ mg kg ⁻¹	-	-	-	-	-	-	-	-	-		
Au B Ba Be	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1						- 899	23	895	20	- - 897	
Bi Br Cd	mg kg-1 mg kg-1 mg kg-1 mg kg-1		-			- - -	0.023	0.003	0.019 - -	0.008	0.021	
Cl Co Cr	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹			-		-	23.3	0.3	23.4	0.1	23.3	
Cs Cu Dy Er	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1		-				4.10 2.3 1.53	0.01 - 0.08 0.1 0.09	4.07 2.2 1.53	0.08 - 0.21 0.1 0.06	4.08 2.2 1.53	
F Ga Gd Ge	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	- - -		- - -	- - - -	- - -	19.9 5.00 2.3	0.5 0.08 0.2	19.8 5.03 2.4	0.7 0.21 0.1	19.8 5.02 2.3	
H I Hg Ho I	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹						4.8 - - -	0.1 - - -	4.7 - - -	0.1 - - -	4.75 - - -	
ln Ir La Li	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1						0.06 - 42	0.01 - 1	0.07 41	0.01 - 1	0.06 - 42	
Lu Mo N	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹			- - -	- - -	- - -	0.33	0.01 0.04	0.31 1.43	0.03 0.10	0.32 1.45	
Nd Ni Os	mg kg-1 mg kg-1 mg kg-1 mg kg-1	-				-	20.3 36.3 16.3	0.3 0.9 0.8	25.8 35.4 16.2	0.7 0.7 0.5	35.9 16.2	
Pb Pd Pr Pt	mg kg-1 mg kg-1 mg kg-1 mg kg-1						9.2	0.2	9.0	0.8	9.1	
Rb Re Rh Ru	mg kg-1 mg kg-1 mg kg-1 ma kg-1						137	4 - -	135	2	136	
S Sb Sc Se	mg kg-1 mg kg-1 mg kg-1 mg kg-1		-				0.16	0.01	0.14	0.01	0.15	
Sm Sn Sr Ta Tb	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹				- - - -		6.5 1.6 1278 1.31	0.2 0.1 16 0.03	6.4 1.6 1255 1.27	0.1 0.1 24 0.06	6.5 1.6 1266 1.29	
Te Th Tl Tm	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	- - -		- - -	- - -		13.3 0.09	0.3 0.01	13.3 0.10	0.5 0.02	13.3 0.10	
U V W Y Yb	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	- - - - -		- - - - -	- - - - - -		3.5 176 1.34 23.5 2.3	0.2 1 0.04 0.5 0.2	3.7 172 1.36 23.0 2.3	0.1 4 0.08 0.8 0.1	3.6 174 1.35 23.3 2.3	
Zn Zr	mg kg-1 mg kg-1	-				-	- 223 3 219 6			221		

Lab code				33A				34A			
Technique	e		EPMA (15	kV, 15	n Α, 1 μm)		EPMA	/LA-ICP-MS	5 (2 mJ/	p, 10 Hz, 10	00 μm)
Number	of points	Frag	ment 1 15	Frag	ment 2 15	Mean of 1+2	Frag	ment 1 85	Frag	ment 2	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
	% m/m % m/m % m/m % m/m % m/m % m/m % m/m	53.5 0.89 16.53 9.11 - 0.2 3.53 6.78	0.33 0.02 0.16 0.12 - 0.01 0.05 0.05	53.66 0.9 16.5 9.09 - 0.2 3.58 6.8	0.25 0.02 0.23 0.1 - 0.01 0.05 0.05	53.58 0.895 16.515 9.1 - 0.2 3.555 6.79	45.98 0.84 - 8.64 - 0.17 3.54 7.34	8.11 0.14 - 1.68 - 0.03 0.27 1.64			45.98 0.84 - 8.64 - 0.17 3.54 7.34
$Na_{2}O K_{2}O P_{2}O_{5} H_{2}O^{+} CO_{2}$	% m/m % m/m % m/m % m/m % m/m	3.35 4.42 0.61 - -	0.12 0.15 0.01 -	3.41 4.38 0.62 - -	0.08 0.22 0.01 -	3.38 4.4 0.615 - -	2.89 4.4 0.51 -	0.52 0.51 0.19 - -			2.89 4.4 0.51 - -
Ag As Au B Ba Be	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	731	73	- - - 775	- - 60	753	- - - 990	254			- - - 990 -
Bi Br Cd Ce Cl Co	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	- - - - -	- - - - -		- - - - -	- - - - -	- 89.4 21.9	- 26.3 10			89.4 21.9
Cr Cs Cu Dy Er Eu E	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹			- - - - - - 341	- - - - - - 87	- - - - - - - -		- - - - -			
Ga Gd Ge Hf Hg Ho	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹			- - - - - -							
l In Ir La Li Lu	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	- - - - -	- - - - -			- - - - -	- - 46.4 -	- - 14.4 -			- - 46.4 -
No Nb Nd Ni Os Pf	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1				- - - - - -		43.2	14.2			43.2
Pd Pr Pt Rb Re Rh	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹						10.6 148	4.2			10.6
Ru S Sb Sc Se Sm	mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹ mg kg ⁻¹	- - - - -	- - - - -	- - - -	- - - - - -	- - - - -	22.5	- - 8.9 -			22.5
Sn Sr Ta Tb Te Th TI	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	- - - - -	- - - - - -	- - - -	- - - - - -	- - - - -	1424 - - 15.7	313 - 7.5			1424 - 15.7
Tm U V W Y	mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1	- - - - -	- - - - -	- - - - -	- - - - - - -	- - - - -	- 3.7 177.7 -	- 1.8 38.7 -			3.7 177.7 -
Zn Zr	mg kg⁻¹ mg kg⁻¹ mg kg⁻¹	77	41	71	26	74	240	54			240

Table 2 (continued).	
G-Probe-1 (TB-1 basaltic glass) - results submitted by participating labo	ratories

Lab code 35A						36A					
Technique		LA-ICP-MS	(0.3 mJ/	′p, 40 μm)		EPMA (15 kV, 10 nA, 15 μm)					
Number of points	Frag	ment 1 6	Frag	ment 2 6	Mean of 1+2	Frag	ment 1 30	Frag	ment 2 30	Mean of 1+2	
Element Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation		
$\begin{array}{cccc} SiO_2 & \ & \ & \ & \ & \ & \ & \ & \ & \ & $						53.50 0.87 16.09 9.37 - 0.19 3.56 6.74 3.09 4.50 0.59 -	0.71 0.04 0.33 0.21 - - 0.04 0.09 0.16 0.10 0.09 0.04 - -	53.08 0.88 15.94 9.34 - 0.18 3.56 6.67 3.06 4.41 0.56 -	0.43 0.03 0.22 0.17 - - - 0.03 0.06 0.08 0.08 0.04 0.05 - -	53.29 0.875 16.015 9.355 0.185 3.56 6.705 3.075 4.455 0.575 -	
بالجاج بالجاج بالجاج بالجاح بالجاح بالجاح <	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- 1005.483 - 95.69 - 4.179 2.345 1.818 - 5.412 5.424 0.83 - 32.172 38.578 - 16.092 10.567 - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	978.627 - 93.1445 - - 4.1485 2.3775 1.796 - 5.2695 5.33 0.8225 - 42.7605 0.343 - 14.7895 10.344 - - - - - - - - - - - - -						

Lab code				37A				38A			
Technique	9		EPMA (20	kV, 20 ı	nA, 10 μm)			EPMA (15	kV, 20 r	h A, 10 μm)	
Number	of points	Frag	ment 1 31	Frag	iment 2 27	Mean of 1+2	Frag	ment 1 10	Frag	ment 2	Mean of 1+2
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation		Mean conc	Standard deviation	Mean conc	Standard deviation	
$\begin{array}{c} \text{SiO}_2\\ \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Fe}_2\text{O}_3\text{T}\\ \text{Fe}(\text{II})\text{O}\\ \text{MnO} \end{array}$	% m/m % m/m % m/m % m/m % m/m % m/m	53.83 0.85 16.64 - 8.45 0.2	0.81 0.062 0.294 - 0.21 0.032	53.96 0.81 16.68 - 8.46 0.19	0.56 0.043 0.261 - 0.209 0.034	53.895 0.83 16.66 - 8.455 0.195	52.86 0.84 15.99 9.37 - 0.2	0.21 0.02 0.06 0.12 - 0.03	53.07 0.83 16.01 9.24 - 0.21	0.24 0.02 0.06 0.1 - 0.04	52.97 0.84 16.00 9.31 - 0.2
MgO CaO Na_2O K_2O P_2O_5 H_2O^+ CO^+	% m/m % m/m % m/m % m/m % m/m	3.52 6.91 3.43 4.39 0.65	0.059 0.131 0.056 0.055 0.069	3.59 6.87 3.39 4.35 0.66	0.037 0.121 0.053 0.141 0.058	3.555 6.89 3.41 4.37 0.655	3.32 6.67 3.15 4.49 0.58	0.06 0.06 0.05 0.03 0.03	3.33 6.67 3.12 4.52 0.55	0.04 0.06 0.04 0.03 0.03	3.33 6.67 3.14 4.51 0.57
┙ ┙ ┓ ┓┓┓┓┓┓┓┓┓┓┓┓┓┓┓┓┓┓ ┓ ┓ ┓ ┓ ┓ ┓ ┓						-	- 1100 0.08	0.02	- 1000	- 200 0.02	1050

Lab code		39A									
Technique			LA-ICP	-MS (26	6 nm)						
Number of I	points	Fragr	nent 1 23	Frag	ment 2	Mean of 1+2					
Element	Conc unit	Mean conc	Standard deviation	Mean conc	Standard deviation						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 m/m 6 m/m 6 m/m 6 m/m 6 m/m 6 m/m 6 m/m 6 m/m 6 m/m 6 m/m	0.8881 - - - - - - - - - - - - - - - -	0.0242 - - - - - - - - - - - - - - - -			0.8881 - - - - - - - - - - - - - - -					
алаанананананананананананананананананан	ਫ਼	974 92.1 24.6 2.9 5.07 2.8 1.97 6.61 6.36 1.03 - 48.8 0.43 - 48.8 0.43 - 48.8 0.43 - 30.4 42.2 19.1 10.2 144 - - - - - - - - - - - - - - - - - -	28 2.9 0.9 0.1 0.22 0.13 0.07 0.26 0.31 0.06 0.31 0.06 0.3 1.5 0.02 1.5 0.8 1.6 0.4 8 1.5 0.8 1.6 0.4 8 0.4 8 0.4 1.5 0.3 1 0.01 0.1 0.1 0.1 0.02 0.1 0.02 0.1 0.07 0.1 0.07 0.1 0.06 0.1 0.02 0.1 0.07 0.1 0.02 0.1 0.07 0.1 0.07 0.1 0.07 0.1 0.07 0.1 0.07 0.1 0.02 0.1 0.07 0.1 0.07 0.1 0.02 0.1 0.07 0.1 0.02 0.1 0.07 0.1 0.02 0.1 0.07 0.1 0.02 0.1 0.07 0.1 0.02 0.1 0.07 0.1 0.02 0.1 0.07 0.1 0.02 0.1 0.07 0.1 0.02 0.1 0.07 0.1 0.02 0.1 0.07 0.1 0.02 0.07 0.1 0.02 0.1 0.07 0.1 0.02 0.1 0.07 0.1 0.02 0.1 0.00 0.1 0.02 0.1 0.07 0.1 0.02 0.1 0.02 0.1 0.00 0.1 0.00 0.1 0.00 0.1 0.00 0.1 0.00 0.0 0.			974 92.1 24.6 2.9 5.07 2.8 1.97 6.61 6.36 1.03 - 48.8 0.43 - 30.4 42.2 19.1 18.1 10.2 144 - - - - - - - - - - - - - - - - - -					

overall mean calculated from the means of each fragment. As can be seen from Table 2, participating laboratories selected a minimum of three and a maximum of ninety eight determinations per fragment of glass to evaluate its average composition. In terms of techniques used, twenty six sets of data were reported by EPMA, eight by ICP-MS, five by ED/WD-SEM and one by ion probe (noting that one laboratory reported combined EPMA/LA-ICP-MS data).

Evaluation of homogeneity

Homogeneity was assessed in two ways: Laboratories that contributed data using bulk analytical techniques were asked to prepare two test portions and to analyse each in duplicate. Agreement in the average compositions of test portions provided data to demonstrate the homogeneity of the sample. As part of the design of the experiment, microprobe laboratories were asked to mount and analyse two separate fragments of the basaltic glass and to report average compositions separately. Agreement between the average composition of these two fragments (Table 2) was again taken as a demonstration of the homogeneity of this sample.

Assigned values

Assigned values are the best estimate of the true composition of the sample and can be evaluated in a number of ways. In the GeoPT programme for laboratories involved in the bulk analysis of silicate rocks, the assigned values are derived from a statistical assessment of the results submitted by participating laboratories, usually as the robust mean. In the present G-Probe programme, the basaltic glass was analysed independently of participating microprobe laboratories. The material separated as "fines" after crushing the fused glass (see above) was circulated to a number of laboratories that had already proven their performance in the GeoPT programme. These laboratories were asked to analyse two test portions of the powdered glass, taking note of the following analytical requirements:

(a) Analyse two test portions in duplicate.

(b) Use a routine, well-characterised analytical technique of proven reliability (e.g., as judged from participation in the Geo*PT* proficiency testing programme).

(c) Provide evidence of traceability of results (this can normally be achieved by showing that the analyt-

ical performance has been assessed by the comparative analysis of suitable (certified) reference materials).

Results, listed in Table 3, were contributed by the following laboratories, using the techniques indicated:

- INAA: Becquerel Laboratories (Menai, NSW, Australia) Interfacultair Reactor Institut (Delft, The Netherlands).
- ICP-MS: GeoForschungsZentrum (Potsdam, Germany) Institute of Geochemistry (Guiyang, PR China) Université de Toulouse (France) University of Tasmania (Australia) Washington State University (WA, USA).
- XRF: Open University (Milton Keynes, UK)University of Tasmania (Australia)US Geological Survey (Denver, CO, USA).

Because a relatively small number of individual determinations was available for each element, the median value was taken as the assigned value. Data are listed in Table 4, for the following oxides/elements for which sufficient results were available to evaluate assigned values:

SiO₂, TiO₂, Al₂O₃, Fe₂O₃T, MnO, CaO, MgO, Na₂O, K₂O, P₂O₅, Ba, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Nb, Nd, Ni, Pb, Pr, Rb, Sc, Sm, Sr, Ta, Tb, Th, Tm, U, V, W, Y, Yb, Zn, Zr.

The quality of these data may be judged from the agreement between data submitted by different laboratories using a number of independent techniques (Table 3 and Figure 1, technique code 1). Note that single gross outliers in data for Co, Cu and V were not included in the calculation of mean data in Table 3, but were included in the full data set from which median values were evaluated in Table 4.

Z-score analysis

In proficiency testing schemes, the z-score is the principle parameter whereby a laboratory can judge the quality of individual analytical results, and is calculated from the expression:

$$z = [X - X_{o}] / \sigma_{p}$$
⁽¹⁾

where:

								200	10	-									
	Labora	tory 1	Laborc	atory 2	Laborat	ory 3	Laborat	tory 4	Laborat	ory 5	Labora	tory 6	Labord	itory 7	Laborat	ory 8	Laborat	ory 9	
Element	Mean St d€	andard viation	Mean Si di	tandard eviation	Mean Sta de	andard viation	Mean St de	andard eviation	Mean Sto de	undard // viation	Mean Sta de	andard viation	Mean Si di	andard 1 eviation	Mean Sto de	undard viation	Mean Sta de	andard (viation	SRAND MEAN
	m %	m	ш %	m/r	, m %	m/	, m %	/m	/m %	۳ ۲	'm %	m/	u %	m/r	/m %	E	/m %	,E	
SiO,	54.42	0.24	,		54.03		54.41	0.11			53.62	0.86							54.12
TiO,	0.845	0.007			0.850		0.867	0.006			0.846	0.012			0.780	0.018	0.830		0.836
Al ₂ O ₂	16.68	0.02	,	ı	16.77	,	16.68	0.03	,		6.48	0.20	,	,	17.49	0.78		,	16.82
Fe,O,T	9.05	0.28			9.16		9.21	0.01			9.05	0.12	8.95	0.06	8.84	0.05			9.04
Fe(II)O	,	,		ı		,	,	,				,	,	,				,	
MnO	0.185	0.001	,		0.180		0.187	0.003	,		0.180	0.001	,		0.190	0.006	0.169	,	0.18
MgO	3.64	0.02	,	ı	3.75	,	3.61	0.01	,	ı	3.56	0.06	ı	ı	3.87	0.20	,	,	3.69
CaO	6.89	0.06	,	ı	6.89	,	6.90	0.02	,	ı	6.74	0.08	6.85	0.02	6.75	0.28	,	,	6.84
Na ₂ O	3.19	0.02		ı	3.35		3.22	0.01			3.00	0.07	3.19	1.96	3.35	0.05			3.22
K ₂ O	4.40	0.01	,		4.28	,	4.42	0.01			4.34	0.06	3.60	0.25	4.72	0.23	,	,	4.29
P_2O_5	0.578	0.000	,		0.590		0.586	0.004			0.625	0.020	,	1	ı				0.59
*IO	'	ı	ı	ı	-0.08	ı	ı	ı	ı	ı	1.25	ı	·	ı	ı	ı	ı	ı	ı
	g m	נם- ا	ng h	kg-1	mg k	g_1	mg k	g-1	mg kç		mg k	g-1	mg	kg ⁻¹	mg kç	-6	mg k	 -	
Ag		ı	I			I	ı		ı	,	ı	1	, 2					I	1
As				ı	°,			,					ć l						
Au	,		,			,		,		,	,		0.159	0.00299	0.165	0.007		,	0.162
Ba	934.8	7.5	934.8	12.3	911.0	5.4 8	69.2	26.6 9	81.1	8.1	,	-	0.900	51.9	915.0	16.6	849.0	'	925.5
Be	ı	,	,	ı	3.9	0.4	,	,	,	ı	,	,	ı	ı	ı	ı	ı	,	,
Bi			0.027	0.026	, 2			ı		ı			,	1	ı			,	
Br		,	,			,		,		,	,	,	ŕ		,	,		,	
Cd			0.29	0.04				,		,			< 10				0.08		
Ce	85.5	0.6	89.7	0.3	89.6	1.8			91.5	0.6			86.9	1.2	91.8	1.4	94.8		90.0
ပိ	ı	1	22.7	0.9	23.3	0.5	52.7	28.4	,	ı	,	,	23.8	0.1	22.6	0.3	24.4	,	23.4
ŗ	50.4	0.2	60.0	1.6	65.9	0.8	71.5	2.4		,			59.6	19.1	57.3	0.1	62.2		61.0
ů ů	3.32	0.02	2.59	0.06	2.95	0.05	· ;		2.80	0.01			2.56	30.48	2.83	0.05	2.85		2.84
n,	7.62	-	64.6	7.7	7.c/	0.4	/3.1	0.9	1		,	,	·				/4.	,	/1.9
Dy	5.32	0.03	4.77	0.07	4.65	0.06		,	4.86	0.01			'	,	5.06	0.21	5.04	,	4.95
Ľ.	2.81	0.04	2.73	0.05	2.69	0.02			2.76	0.02							2.89		2.78
Eu	1.980	0.016	1.921	0.108	1.850	0.026			1.918	0.027			1.780	0.058	1.900	0.038	1.910	,	1.894
Ga	18.8	0.1	19.8	0.4	20.4	0.1	19.2	0.7	,	ı	,	,	'	,	ı	ı	21.4	,	19.9
Gd	6.35	0.04	6.03	0.05	6.06	0.10	,	,	6.20	0.07	,	,	,	,		,	6.35	,	6.20
Ge		,	1.68	0.07		,		,		,	,	,	,		,	,	1.84	,	
Ŧ	5.87	0.04	5.83	0.09	5.68	0.02		,	6.25	0.09			5.66	0.04	6.40	0.09	6.89	,	6.08
Ho	1.040	0.004	0.929	0.027	0.950	0.008			0.943	0.004			1.150	0.024		,	1.010		1.004
	_	_		_		_		_		_		_		_		_		_	

مئما بالماغم 242 Table 3. G-Prohe-1 s

	Labora	tory 1	Labora	tory 2	Laborate	ory 3	Labora	tory 4	Laborat	tory 5	Labora	tory 6	Labora	tory 7	Laborat	ory 8	Laborato	ry 9	
Element	Mean Ste de	andard viation	Mean St d€	andard viation	Mean Sta dev	ındard /iation	Mean St dé	andard șviation	Mean Sto de	andard viation	Mean St d€	andard sviation	Mean Sto de	andard viation	Mean St de	andard viation	Mean Sta dev	ndard (iation	3RAND MEAN
	mg k	g-1	mg k		mg kç	3-1	mg k	g-1	mg k	g-1	mg k	eg-1	mg k	g-1	mg k	g-1	mg kg	-	
<u> </u>	,	,			,	,		,	,		,	,		,	,	,	0.039		
<u>_</u>	'				ı	,							< 0.01		,			,	
La	,	,	45.19	0.31	44.70	1.01	,	ı	45.81	0.23	,	,	45.40	0.51	43.80	0.51	46.50	ı	44.98
:=	,	,	,	,	17.9	,	,	ı	,	,	,	ı	·		ı	ı	19.1	ı	18.5
Lu	0.400	0.005	0.397	0.011	0.390	0.005		ı	0.403	0.006	,		0.390	0.006	0.400	0.026	0.410	ı	0.399
Mo	'	,			1.4	0.0	,						< 5 <	,	,		1.2	,	
ЧN	27.3	0.2	28.2	0.5	27.4	0.3	28.7	0.6			,	ı	ı		·		28.9		28.1
Nd	38.2	0.1	40.0	0.3	39.8	0.4			41.4	0.3			39.8	1.1	41.5	3.2	41.6	,	40.3
īz	21.7	0.1	14.5	L.I	18.2	0.6	19.4	0.6						,	,		21.4	,	19.0
Pb	16.7	0.3	15.4	0.8	16.4	0.7	15.8	2.5	16.2	0.7			,	,	,		15.9	,	16.1
Pr	9.62	0.06	10.47	0.07	10.60	0.10			10.89	0.04		ı				ı	10.60		10.44
Rb	139.5	1.4	143.4	2.8	143.0	0.9	150.1	1.9	142.2	1.4	,	ı	148.0	3.3	146.0	6.9	147.0	,	144.9
S	'	,				,	32.8	2.2				,		,	,			,	,
Sb	'				0.15	0.01							< 0.2	,			0.29	,	0.22
Sc	23.3	0.3	,	,	22.9	1.1	25.6	1.1	,	,	,	,	21.8	0.2	21.4	0.2	22.7	ı	23.0
Se	ı	,	,	,	ı	ı	,	,	,	,	,	ı	, 2	,	,	ı	,	ı	,
Sm	7.95	0.03	7.23	0.12	7.48	0.12	,	ı	7.63	0.11	,	ı	7.34	0.04	7.72	0.19	7.91	ı	7.61
Sn	'	,	1.5	0.6	1.6	0.1	,	,	,	,	,		200	,	,		,	,	,
Sr	1342	12 1	1389	30	1328	-	363	13 1	374	17	'			-	1417	26	1260	<u> </u>	353
Ta	1.57	0.02	1.34	0.41	1.56	0.01	,	ı	,	,	,	ı	1.36	0.09	1.46	0.09	1.56	ı	1.48
Tb	0.930	0.004	0.817	0.014	0.840	0.010		ı	0.833	0.008	,		0.920	0.247	0.740	0.028	0.890		0.853
Te									'			,	²						
T	14.9	0.2	15.4	0.5	15.1	0.2	17.7	1.4	14.5	0.1			15.0	0.3	14.8	0.1	15.9	,	15.4
ц	1		0.044	0.013	0.135	0.006	,	,			,				,	ı	I	,	,
Tm	0.410	0.004	0.390	0.008	ŀ	,	,	,	0.389	0.009	,	,		,	,		0.390	,	0.395
D	'	,	4.42	0.25	4.20	0.17	5.45	0.76	4.11	0.04	,	,	3.45	0.09	3.89	0.34	4.53	,	4.29
>	83.9	0.4	194.1	4.6	188.3	0.8	203.5	6.1	,	,	,	ı	ı	,	190.0	8.7	188.0	,	192.8
×	ı	,	,	,	3.1	1.2	,	,	,	,	,	ı	, 2	,	,	ı	2.1	ı	2.6
×	27.9	0.2	26.5	0.5	25.3	0.2	28.6	1.3	25.3	0.3	,	ı	,	,	,	ı	27.3	,	26.8
Yb	2.58	0.02	2.54	0.05	2.54	0.02		,	2.65	0.01	,	,	2.54	0.04	2.67	0.06	2.87		2.63
Zn	70.1	0.3	95.4	3.7	111.0	0.5	101.6	0.3		,	,	ı	104.0	54.3	ı	ı	103.0	ı	103.0
Zr	231.8	1.9	261.7	2.4	245.0	0.8	255.8	5.3	272.1	2.0	,	'	294.0 j	02.9	233.0	15.9	233.0		253.3

Participating laboratories. Becquerel Laboratories (Menai, NSW, Australia), GeoForschungsZentrum (Potsdam, Germany), Interfacultair Reactor Institut (Delft, The Netherlands), Institute of Geochemistry (Guiyang, PR China), Open University (Milton Keynes, UK), US Geological Survey (Denver, CO, USA), Université de Toulouse (France), University of Tasmania (Australia), Washington State University (WA, USA). Grand Mean is the average of the mean laboratory results with aross outliers excluded.

Loss on ignition.

average of the mean laboratory results with gross outliers excluded.

Table 3 (continued). G-Probe-1 summary data of bulk determinations on TB-1 (basaltic glass)

Table 4.
G-Probe-1. Assigned values (taken as the
median of the bulk determinations on TB-1)

Element	Assigned value	Target precision
	% m/m	precision
SiO ₂	54.22	1.19
TiO2	0.845	0.035
Al ₂ O ₂	16.68	0.44
Fe ₂ O ₃ T	9.05	0.26
MnO	0.183	0.009
MqO	3.64	0.12
CaO	6.87	0.21
Ng ₂ O	3.20	0.11
K ₂ O	4.37	0.14
P_2O_5	0.588	0.025
	mg kg-1	
Ва	924.9	52.9
Ce	89.7	7.3
Co	23.5	2.3
Cr	60.0	5.2
Cs	2.83	0.39
Cu	73.1	6.1
Dy	4.95	0.62
Er	2.76	0.38
Eυ	1.91	0.28
Ga	19.8	2.0
Gd	6.20	0.75
Hf	5.87	0.72
Но	0.98	0.16
La	45.3	4.1
Lu	0.40	0.07
Nb	28.2	2.7
Nd	40.0	3.7
Ni	19.4	2.0
Pb	16.0	1.7
Pr	10.6	1.2
Rb	144.7	10.9
Sc	22.8	2.3
Sm	7.63	0.90
Sr	1363	74
Ta	1.51	0.23
Th	0.84	0.14
Th	15.0	16
Tm	0.39	0.07
U	4.20	0.54
V	189.2	13.7
Y	26.9	2.6
Yb	2.58	0.36
Zn	102.3	8.2
Zr	250	17

The assigned value is the median of the bulk analytical results listed in Table 3. The target precision is calculated using the Horwitz function (see text).

X is the contributed result, X_{α} is the assigned value and σ_{p} is the target precision.

The target precision, $\sigma_{p'}$ used in this expression is a value similar in function to a standard deviation that describes the acceptable range of variation among

GEGENANDARDS NEWSLETTER The Journal of Geostandards and Geoanalysis

the results. Its value is selected on fitness-for-purpose criteria and represents the maximum acceptable level of uncertainty in the results. Accordingly, a z-score more extreme than \pm 3 implies that an unacceptable source of error may be present in the participant's analytical system and that remedial action should be taken. Z-scores more extreme than ± 2 carry the same message to a lesser degree, but will occur by chance with reasonable frequency (about one in twenty results for a participant complying exactly), so isolated values will not signify much. As far as the G-Probe programme is concerned, z-score results in the range -2 < z < 2are considered to be satisfactory. However, if the z-score for any element falls outside this range, contributing laboratories are advised to examine their procedures to ensure that determinations are not subject to unsuspected analytical bias.

In selecting the most appropriate value of $\sigma_{\rm p}$, similar criteria to those used in the GeoPT programme have been adopted here. In that (GeoPT) programme, the value of $\sigma_{\rm p}$ was derived from the Horwitz function (Horwitz *et al.* 1980, Thompson 2000),

$$R_{\rm H} = 0.02 c^{0.8495}$$
 (2)

where R_H is the reproducibility (between laboratory) standard deviation observed at an analyte concentration c, both being expressed as mass ratios (for example, 1 mg kg⁻¹ = 10⁻⁶). The Horwitz function is an empirical observation that applies over a wide range of concentrations, test materials, analytes and physical principles underlying the analytical procedure. Two levels of uncertainty were recognised as fit-for-purpose in Geo*PT*: "Class 1", was considered to be appropriate for high precision analysis for "pure" geological research where

$$\sigma_{p} = R_{H} / 2 \tag{3}$$

and "Class 2", more appropriate for "applied geochemistry" where

$$\sigma_{p} = R_{H}$$
 (4)

Participants were required to select the Class against which their data should be judged according to their objective needs.

For the G-Probe-1 programme, the authors are not aware of any universally accepted fitness-for-purpose criteria against which microprobe data should be

Figure 1. Comparison of analytical results for TB-1 (basaltic glass). *Technique code (0)* represents the median value and the (median-2z) and (median+2z) z-score limits; *technique code (1)* represents the results of bulk analytical techniques used to analyse independently TB-1 fines; *technique code (2)* represents electron microprobe results, *(3)* ED/WD SEM, *(4)* ion microprobe and *(5)* LA-ICP-MS.

NDARDS

Figure 1 (continued). Comparison of analytical results for TB-1 (basaltic glass). *Technique code (0)* represents the median value and the (median-2z) and (median+2z) z-score limits; *technique code (1)* represents the results of bulk analytical techniques used to analyse independently TB-1 fines; *technique code (2)* represents electron microprobe results, (3) ED/WD SEM, (4) ion microprobe and (5) LA-ICP-MS.

Figure 1 (continued). Comparison of analytical results for TB-1 (basaltic glass). *Technique code (0)* represents the median value and the (median-2z) and (median+2z) z-score limits; *technique code (1)* represents the results of bulk analytical techniques used to analyse independently TB-1 fines; *technique code (2)* represents electron microprobe results, *(3)* ED/WD SEM, *(4)* ion microprobe and *(5)* LA-ICP-MS.

Figure 1 (continued). Comparison of analytical results for TB-1 (basaltic glass). *Technique code (0)* represents the median value and the (median-2z) and (median+2z) z-score limits; *technique code (1)* represents the results of bulk analytical techniques used to analyse independently TB-1 fines; *technique code (2)* represents electron microprobe results, (3) ED/WD SEM, (4) ion microprobe and (5) LA-ICP-MS.

Figure 1 (continued). Comparison of analytical results for TB-1 (basaltic glass). *Technique code (0)* represents the median value and the (median-2z) and (median+2z) z-score limits; *technique code (1)* represents the results of bulk analytical techniques used to analyse independently TB-1 fines; *technique code (2)* represents electron microprobe results, (3) ED/WD SEM, (4) ion microprobe and (5) LA-ICP-MS.

judged. The "Class 2" standard was, therefore, arbitrarily selected, such that the target precision here has been calculated from

$$\sigma_{\rm p} = R_{\rm H} = 0.02 c^{0.8495}$$
(5)

The appropriateness of this assumption is commented on further in the evaluation of results below. As a guide, some values of relative standard deviation based on σ_{p} , over the normal concentration range for data judged by the "Class 1" and "Class 2" standards are given in Table 5.

Table 5. Relative standard deviations implied by the target value σ_{p}

Concentration	% RSD (Class 1)	% RSD (Class 2)
100% m/m	1	2
10% m/m	1.4	2.8
1% m/m	2	4
1000 mg kg ⁻¹	2.8	5.7
100 mg kg-1	4	8
10 mg kg-1	5.7	11.3
1 mg kg ⁻¹	8	16
0.1 mg kg-1	11.3	22.6
0.01 mg kg ⁻¹	16	32

Data in Table 6 lists z-scores for all results submitted by participating laboratories. Z-score data were calculated from the average of the mean compositions of fragment 1 and fragment 2.

Participating laboratories

Laboratories that contributed data to this proficiency testing round are listed in Table 7. Note that to preserve confidentiality, there is no correspondence between the round number in Table 2 and the order in which laboratories are listed in Table 7.

Discussion

Overall performance

In order to simplify an evaluation of the overall performance of laboratories contributing to this round, results for each element that could be assessed are plotted in Figure 1. The diagrams in this Figure show the concentration of each reported determination, segregated according to analytical technique as follows:

Technique code 0: The three data points represent the -2 < z < 2 range against which results have been evaluated. The individual points correspond to $(X_a - 2\sigma_p)$, X_a and $(X_a + 2\sigma_p)$.

Technique code 1: Data points represent determinations by the bulk analytical techniques on the

Element EPMA EPMA EPMA EPMA EPMA LA-HR (CP-MS CA <ha< th=""> ODO ODO ODO ODO</ha<>	Lab code	1A	2A	3A	4A	5A	6A	7A	8A	9A	10A
Siop, 100, 101, 	Element	EPMA	EPMA	EPMA	EPMA	EPMA	EPMA	LA-HR ICP-MS	EPMA	lon Probe	EPMA
TO 2-1.010.110.14-2.453.751.592.870.140.00-0.08A)C30.530.880.630.520.770.730.120.180.440.67FeyD70.831.041.120.871.21.2MnO0.240.710.292.934.521.150.040.82-1.882.22MgO0.510.391.390.380.420.154.160.32-0.440.07NapO0.510.391.390.380.320.4160.32-0.440.07NapO0.510.390.390.320.320.4160.300.420.440.07NapO1.271.500.292.500.320.154.160.320.440.07NapO1.271.500.292.500.320.450.320.440.07NapO1.271.500.292.500.320.450.220.440.07NapO1.271.500.290.350.320.410.440.250.25NapO1.271.500.290.350.320.410.450.250.25NapO1.271.500.290.350.350.350.550.550.550.55NapO1.271.500.40.40.40.40.40.40.4 <td>SiO₂</td> <td>-0.06</td> <td>-0.44</td> <td>-0.57</td> <td>0.12</td> <td>0.31</td> <td>-0.19</td> <td>-</td> <td>-0.04</td> <td>0.03</td> <td>-0.77</td>	SiO ₂	-0.06	-0.44	-0.57	0.12	0.31	-0.19	-	-0.04	0.03	-0.77
AlçOn FeçOr FeçOr FeçOr 	TiO ₂	-1.01	0.11	0.14	-2.45	3.75	1.59	2.87	0.14	0.00	-0.08
Feq.0470.831.041.1.1.1.120.871.120.871.120.44Feq.070.240.710.292.930.4521.1350.980.920.880.420.821.882.23MoO0.510.390.391.292.93-1.691.093.060.800.400.71CaO0.510.850.361.220.320.154.160.320.640.77Na_2O1.271.500.360.320.351.610.460.830.32P_2O_30.890.210.300.481.882.72.71.50.450.7P_2O_40.890.210.300.481.882.72.71.50.450.7P_2O_50.890.210.300.481.882.72.71.50.450.7Rea71.77777777777Ce71.777	Al ₂ O ₃	-0.53	0.85	-0.63	-0.52	-0.77	-0.73	-	0.18	-0.44	-0.67
Fer000 <td>Fe₂O₃T</td> <td>0.83</td> <td>1.04</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-1.12</td> <td>0.87</td> <td>-</td> <td>0.44</td>	Fe ₂ O ₃ T	0.83	1.04	-	-	-	-	-1.12	0.87	-	0.44
MnO0.240.710.290.4930.4520.1350.040.820.1890.493MgO0.510.390.380.1290.680.193.060.800.471.30CaO0.510.880.220.580.590.150.460.880.77K,O0.600.920.280.350.591.150.40.460.380.22P ₂ O0.880.220.380.370.581.610.460.380.22P ₂ O0.890.210.300.481.880.71.450.460.380.22P ₂ O0.890.210.300.480.370.581.610.460.380.22P ₂ O0.890.210.300.480.380.270.500.40.480.380.22P ₂ O0.890.210.300.480.380.270.500.40.40<	Fe(II)O	-	-	1.31	-0.38	0.88	0.41	-	-	-	-
MgO0.010.039-1.39-0.76-1.68-1.093.060.800.47-1.30CaO0.510.850.36-1.220.320.154.160.320.440.07Na_2O1271.500.290.280.355.97-1.15.1.460.320.440.02P_2O_3-0.89-0.210.290.280.355.97-1.15.1.460.380.22P_2O_3-0.89-0.210.300.48-1.880.501.77.8Re1.24777.87.8Ce1.2477 <td>MnO</td> <td>0.24</td> <td>-0.71</td> <td>-0.29</td> <td>-2.93</td> <td>-4.52</td> <td>-1.35</td> <td>0.04</td> <td>-0.82</td> <td>-1.88</td> <td>-2.82</td>	MnO	0.24	-0.71	-0.29	-2.93	-4.52	-1.35	0.04	-0.82	-1.88	-2.82
CO CO NepO1.0510.850.36-1.220.0320.0154.160.0320.0440.071NepO LQO1271.500.295.085.991.15.1.450.850.77K_O P_OS0.600.920.280.350.370.581.160.460.380.32P_CS CO0.6890.210.200.481.181.1.450.460.380.32Ba CO1.74711.1.742.7917.88Ba CO1.7411.0.581.610.0027.88Ba1.7411.0.400.701.581.51CO1.51.51.50.0021.57.88CO1.51.51.51.51.51.5CO1.51.51.51.51.51.5CO1.51.51.51.51.51.5CO1.51.51.51.51.5CO1.51.51.51.51.5CO1.51.5<	MgO	-0.51	-0.39	-1.39	-0.76	-1.68	-1.09	3.06	-0.80	-0.47	-1.30
Na ₂ O1.151.151.151.451.450.850.77K _y O0.600.920.280.350.370.581.610.460.380.32P ₂ O0.890.210.300.81.881.81.81.80.501.510.460.380.32P ₂ O0.890.210.300.81.81.81.82.70.501.80.551.8Ba70.741.71.71.71.71.71.71.71.71.8Ce71.7 <td>CaO</td> <td>-0.51</td> <td>0.85</td> <td>-0.36</td> <td>-1.22</td> <td>-0.32</td> <td>-0.15</td> <td>4.16</td> <td>-0.32</td> <td>-0.44</td> <td>0.07</td>	CaO	-0.51	0.85	-0.36	-1.22	-0.32	-0.15	4.16	-0.32	-0.44	0.07
NO 0.40 0.92 0.28 0.35 0.37 0.58 1.61 0.46 0.38 0.32 P ₂ O ₅ 0.89 0.21 0.30 0.48 -1.88 P. 0.50 7. 7.48 Ba 1.747 2.79 7.44 Ca 2.79 7.44 Ca	Na₂O	1.27	1.50	0.29	5.08	-5.99	-1.15	-	1.45	0.85	0.77
P,O,-0.89-0.21-0.300.48-1.880.507.48Ba2.26Ca2.26	K ₂ O	0.60	0.92	0.28	0.35	-0.37	-0.58	1.61	0.46	0.38	0.32
Ba <th< td=""><td>P_2O_5</td><td>-0.89</td><td>-0.21</td><td>-0.30</td><td>0.48</td><td>-1.88</td><td>-</td><td>-</td><td>-0.50</td><td>-</td><td>7.48</td></th<>	P_2O_5	-0.89	-0.21	-0.30	0.48	-1.88	-	-	-0.50	-	7.48
Ce	Ва	-	- 17.47	-	-	-	-	2.79	-	-	-
Co	Ce	-	-	-	-	-	-	2.26	-	-0.02	-
CrI.I.I.I.I.I.S.I.S.I.I.I.CsI.I.I.I.I.I.I.I.I.I.I.CuI.I.I.I.I.I.I.I.I.I.I.DyI.I.I.I.I.I.I.I.I.I.I.I.DyI.I.I.I.I.I.I.I.I.I.I.I.FuI.I.I.I.I.I.I.I.I.I.I.I.GaI.I.I.I.I.I.I.I.I.I.I.I.GaI.I.I.I.I.I.I.I.I.I.I.I.I.GaI.	Co	-	-	-	-	-	-	-0.40	-	-	-
CsIIIIIIIIIICuIIIIIIIIIIIIDyIIIIIIIIIIIIIErIIIIIIIIIIIIIIEuIII <td< td=""><td>Cr</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.58</td><td>-</td><td>-</td><td>-</td></td<>	Cr	-	-	-	-	-	-	0.58	-	-	-
CuDy	Cs	-	-	-	-	-	-	-	-	-	-
Dy	Cu	-	-	-	-	-	-	-2.17	-	-	-
Fr	Dy	-	-	-	-	-	-	-0.20	-	-2.17	-
Eu	Er	-	-	-	-	-	-	-0.43	-	0.15	-
GaGd <td>Eυ</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>0.26</td> <td>-</td> <td>-0.97</td> <td>-</td>	Eυ	-	-	-	-	-	-	0.26	-	-0.97	-
Gd<	Ga	-	-	-	-	-	-	-	-	-	-
HfHoLaLu <td< td=""><td>Gd</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-0.40</td><td>-</td><td>-1.79</td><td>-</td></td<>	Gd	-	-	-	-	-	-	-0.40	-	-1.79	-
HoLa1.515.0LuNb1.691.10Nd1.691.10Nd1.1227Nd1.1227Nd1.1227Nd1.1227Nd27NdPbPfScScScTa	Hf	-	-	-	-	-	-	-0.62	-	-	-
La1.51-0.050.Lu0.017-0.075.Nb0.0171.00.75.Nd1.091.00.Nd0.27.Nd1.12-0.27.NdNdNdNdNdNdPbPdRbScSrTaSr	Ho	-	-	-	-	-	-	-0.44	-	-	-
Lu	La	-	-	-	-	-	-	1.51	-	-0.50	-
Nb1.691.10NdNi <t< td=""><td>Lu</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-0.17</td><td>-</td><td>-0.75</td><td>-</td></t<>	Lu	-	-	-	-	-	-	-0.17	-	-0.75	-
Nd1.120.27-NiPbPr0.840.29Rb0.13Sc0.24-1.82-Sm0.29Sr0.290.19-Ta0.290.19-Sr0.290.19-Sr0.290.19-Sr0.290.19-Ta0.41-0.40-ThThU<	Nb	-	-	-	-	-	-	1.69	-	1.10	-
Ni \cdot Pb \cdot Pr \cdot Rb \cdot Sc \cdot Sm \cdot Sr \cdot Ta \cdot <td>Nd</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>1.12</td> <td>-</td> <td>-0.27</td> <td>-</td>	Nd	-	-	-	-	-	-	1.12	-	-0.27	-
PbPr <td< td=""><td>Ni</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-1.93</td><td>-</td><td>-</td><td>-</td></td<>	Ni	-	-	-	-	-	-	-1.93	-	-	-
Pr0.840.29-Rb0.13Sc0.24-1.82-Sm0.29-0.19-Sm0.29-0.19-Sm0.29-0.19-Sm0.29-0.19-Sm0.29-0.19-Sm0.29-0.19-Sm0.29-0.19Sm0.29-0.19TaThThUV<	Pb	-	-	-	-	-	-	-	-	-	-
Rb 0.13 Sc 0.24 1.82 Sm 0.29 0.019 Sm 0.29 0.019 Sm 0.29 0.019 Sr 0.29 0.019 Sr 0.29 0.019 Sr 0.29 0.019 Sr 0.29 0.019 0.019 Ta 0.40 Ta Th Th <td>Pr</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>0.84</td> <td>-</td> <td>-0.29</td> <td>-</td>	Pr	-	-	-	-	-	-	0.84	-	-0.29	-
Sc0.24-1.82-Sm0.290.19-Sr-18.524.14-0.40-Ta-18.520.47Ta0.47Tb0.47Th0.47Th0.47Th0.36ThThThTmV<	Rb	-	-	-	-	-	-	0.13	-	-	-
Sm \cdot \cdot \cdot \cdot \cdot 0.29 \cdot -0.19 \cdot Sr \cdot -18.52 \cdot \cdot \cdot \cdot 4.14 \cdot 0.40 $-$ Ta \cdot \cdot \cdot \cdot \cdot 0.47 \cdot 0.40 $-$ Tb \cdot \cdot \cdot \cdot \cdot 0.47 \cdot \cdot $-$ Tb \cdot \cdot \cdot \cdot \cdot 0.47 \cdot \cdot $-$ Th \cdot \cdot \cdot \cdot \cdot \cdot 0.47 \cdot \cdot $-$ Th \cdot \cdot \cdot \cdot \cdot \cdot 0.47 \cdot \cdot $-$ Th \cdot Th \cdot Th \cdot Th \cdot U \cdot V \cdot V \cdot	Sc	-	-	-	-	-	-	0.24	-	1.82	-
Sr18.524.14-0.40-Ta0.47Tb0.38Th0.36Th0.36Th0.36Th0.36ThTmUVYUVY <td>Sm</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>0.29</td> <td>-</td> <td>-0.19</td> <td>-</td>	Sm	-	-	-	-	-	-	0.29	-	-0.19	-
Ta0.47Tb0.38Th0.36TlTmUV13.760.431.06-	Sr	-	-18.52	-	-	-	-	4.14	-	0.40	-
Tb - - - - - -0.38 - - - Th - - - - - 0.36 - - - Tl - - - - - 0.36 - - - Tl - - - - - - - - - Tm - - - - - - - - - V - - - - - - - - - Y - - - - - - - - -	Ta	-	-	-	-	-	-	0.47	-	-	-
Th - - - - - 0.36 - - - Tl - - - - - - - - - Tm - - - - - - - - - U - - - - - - - - V - 13.76 - - - - - - Y - - - - - - - -	Tb	-	-	-	-	-	_	-0.38	-	_	-
TI - - - - - - - - Tm - - - - - - - - - Tm - - - - - - - - - U - - - - - - 0.09 - - - V - - - - - 0.19 - - - Y - -13.76 - - - - -0.68 - -0.64 -	Th	-	-	-	-	-	_	0.36	-	_	-
Tm - - - - - - - - U - - - - - 0.09 - - - V - - - - - 0.19 - - - Y - -13.76 - - - - -0.68 - -0.64 -	TI	-	-	-	-	-	-	-	-	_	-
U - - - - - - - V - -13.76 - - - - -0.68 - -0.64 - Y - - - - - -0.43 - -10.6 -	Tm	-	-	-	-	-	-	-0.09	-	_	-
V13.760.680.64 - Y0.431.06 -	U	-	-	-	-	-	-	0.19	-	_	-
Y	v	-	-13.76	-	-	-	_	-0.68	-	-0.64	_
	Y	_	-	_	-	-	_	-0.43	_	-1.06	_
Yb 0.54 - 1.13 -	Yb	_	_	_	-	-	_	0.54	_	1.13	_
Zn 0.89	Zn	-	-	_	-	-	_	0.89	-	_	_
Zr0.800.73 -	Zr	-	-	-	-	-	_	-0.80	-	-0.73	-

Table 6. G-Probe-1 Z-score analysis (TB-1 basaltic glass)

Table 6 (continued). G-Probe-1 Z-score analysis (TB-1 basaltic glass)

Lab code	11A	12A	13A	14A	15A	16A	17A	18A	19A	20A
Element	ED SEM	EPMA	EPMA	ED SEM	EPMA	EPMA	EPMA	ED SEM	EPMA	EPMA
SiO ₂	1.11	-0.12	-0.06	-0.23	-0.04	-0.04	-0.01	-0.60	-0.88	-0.48
TiO ₂	-1.01	-0.17	2.02	0.00	-0.14	-0.43	0.58	1.59	41.25	-0.14
Al ₂ O ₃	0.16	-0.58	1.08	-0.74	-0.23	-0.38	0.74	-0.66	-8.23	-0.22
Fe ₂ O ₃ T	-4.87	-	-	1.02	-1.27	0.96	1.12	0.73	13.14	0.56
Fe(II)O	-	1.02	0.95	-	-	-	-	-	-	-
MnO	-	-0.44	-0.29	-2.93	-9.82	-0.29	0.24	-4.52	1.30	-0.29
MgO	-0.72	-0.30	0.53	-0.39	-0.34	-1.39	-0.59	-0.84	-1.84	-0.89
CaO	-0.12	-0.23	-0.85	-0.27	-7.66	0.32	0.17	-1.22	0.56	-0.36
Na ₂ O	-	1.17	1.17	1.03	2.20	-1.57	-0.55	-0.41	-1.38	0.52
K ₂ O	3.78	-0.47	1.17	1.74	1.31	0.96	1.74	1.42	-18.29	-0.12
P_2O_5	-	2.48	3.23	-4.43	-5.41	-0.89	0.28	-2.66	-8.16	-0.11
Ва	-	-	-1.72	-	-	-	-	-	-	-
Ce	-	-	-1.03	-	-	-	-	-	-	-
Co	-	-	-	-	-	-	-	-	-	-
Cr	-	-	-	-	-11.58	-	-	-	-	-
Cs	-	-	-	-	-	-	-	-	-	-
Cu	-	-	-	-	-	-	-	-	-	-
Dy	-	-	-1.03	-	-	-	-	-	-	-
Er	-	-	-0.89	-	-	-	-	-	-	-
Eυ	-	-	-0.40	-	-	-	-	-	-	-
Ga	-	-	-	-	-	-	-	-	-	-
Gd	-	-	-1.12	-	-	-	-	-	-	-
Hf	-	-	-0.47	-	-	-	-	-	-	-
Ho	-	-	-0.51	-	-	-	-	-	-	-
La	-	-	-0.07	-	-	-	-	-	-	-
Lu	-	-	-0.75	-	-	-	-	-	-	-
Nb	-	-	-1.76	-	-	-	-	-	-	-
Nd	-	-	-0.62	-	-	-	-	-	-	-
Ni	-	-	-2.92	-	-	-	-	-	-	-
Pb	-	-	-1.77	-	-	-	-	-	-	-
Pr	-	-	-1.09	-	-	-	-	-	-	-
Rb	-	-	-1.66	-	-	-	-	-	-	-
Sc	-	-	-1.56	-	-	-	-	-	-	-
Sm	-	-	-0.64	-	-	-	-	-	-	-
Sr	-	-	-1.21	-	-	-	-	-	-	-
Та	-	-	-1.61	-	-	-	-	-	-	-
Tb	-	-	-0.62	-	-	-	-	-	-	-
Th	-	-	-0.50	-	-	-	-	-	-	-
TI -	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-0.49	-	-	-	-	-	-	-
U	-	-	-0.65	-	-	-	-	-	-	-
V	-	-	-	-	-	-	-	-	-	-
Y	-	-	-1.39	-	-	-	-	-	-	-
Yb -	-	-	0.03	-	-	-	-	-	-	-
∠n	-	-	-	-	-	-	-	-	-	-
∠r	- 1		-1.25	- 1		- 1	- 1	- 1	- 1	

Table 6 (continued).	
G-Probe-1 Z-score analysis (TB-1	basaltic glass)

Lab code	21A	22A	23A	24A	25A	26A	27A	28A	29A	30A
Element	EPMA	EPMA	EPMA	LA ICP-MS	EPMA	LA ICP-MS	EPMA	LA ICP-MS	EPMA	ED/WD SEM
SiO ₂	-0.29	-0.49	0.40	-	-0.92	-	-0.44	-	-0.65	-0.75
TiO ₂	-0.29	0.72	-0.43	-	-0.58	-1.59	0.58	-	0.43	0.86
Al ₂ O ₃	-0.86	-1.48	0.65	-	-0.14	-	-0.76	-	-0.38	-1.40
Fe ₂ O ₃ T	-0.58	0.52	0.71	-	-	-	0.27	-	-	-0.69
Fe(II)O	-	-	-	-	2.91	-	-	-	0.65	-
MnO	-0.29	0.77	1.30	-	0.77	-0.29	-0.29	-	-0.29	2.36
MgO	-0.55	-0.72	-1.55	-	-1.84	-0.09	-1.01	-	-0.93	0.74
CaO	-0.83	-0.58	-0.51	-	-0.90	-	0.19	-	-0.12	0.44
Na ₂ O	0.34	1.82	-2.03	-	0.89	2.52	0.66	-	-0.50	-3.10
K ₂ O	-1.08	1.53	-0.40	-	0.78	-	0.63	-	-0.12	-0.33
P_2O_5	-	-0.30	-	-	0.68	-	0.28	-	-0.70	-5.21
Ва	-	-	-	-	-	0.54	3.21	0.17	-	-
Ce	-	-	-	-1.59	-	0.38	-	-0.62	-	-
Co	-	-	-	-2.07	-	0.62	-	-	-	-
Cr	-	-	-	-	-	-	-	-	-	-
Cs	-	-	-	-1.25	-	0.44	-	-	-	-
Cu	-	-	-	-	-	1.28	-	-	-	-
Dy	-	-	-	-0.32	-	-1.29	-	-0.31	-	-
Er	-	-	-	-0.27	-	-1.21	-	0.07	-	-
Eu	-	-	-	-0.54	-	-0.23	-	0.18	-	-
Ga	-	-	-	-	-	-	-	-	-	-
Gd	-	-	-	-0.43	-	-1.33	-	-0.53	-	-
Hf	-	-	-	-0.33	-	-0.51	-	0.60	-	-
Ho	-	-	-	-0.29	-	-0.92	-	-0.02	-	-
La	-	-	-	-0.56	-	0.17	-	1.12	-	-
Lu	-	-	-	0.34	-	-0.68	-	0.52	-	-
Nb	-	-	-	0.23	-	-0.03	-	-1.57	-	-
Nd	-	-	-	-0.06	-	-0.32	-	0.69	-	-
Ni	-	-	-	-3.01	-	-0.30	-9.76	-	-	-
Pb	-	-	-	-3.51	-	1.10	-	-	-	-
Pr	-	-	-	-0.74	-	-0.52	-	0.00	-	-
Rb	-	-	-	-3.53	-	-	-	-	-	-
Sc	-	-	-	0.49	-	-1.10	-	-0.86	-	-
Sm	-	-	-	-0.46	-	-0.65	-	0.19	-	-
Sr	-	-	-	-1.17	-	-0.18	-2.43	-0.46	-	-
Ta	-	-	-	0.18	-	-0.29	-	-0.97	-	-
Tb	-	-	-	-0.40	-	-0.80	-	0.28	-	-
Th	-	-	-	-0.35	-	-0.62	-	0.69	-	-
TI	-	-	-		-	-	-	-	-	-
Tm	-	-	-	-0.07	-	-0.77	-	-0.34	-	-
U	-	-	-	-1.84	-	0.55	-	-0.91	-	-
V	-	-	-	-2.22	-	0.39	-	-	-	-
Y	-	-	-	-0.40	-	-1.53	-	-0.88	-	-
Yb	-	-	-	0.42	-	-0.50	-	0.67	-	-
Zn	-	-	-	-3.37	-	-	-	-	-	-
Zr	-	-	-	-0.84	-	-0.48	-5.75	-0.88	-	-

Table 6 (continued). G-Probe-1 Z-score analysis (TB-1 basaltic glass)

Lab code	31A	32A	33A	34A	35A	36A	37A	38A	39A
Element	ED SEM	LA ICP-MS	EPMA	EPMA LA-ICP-MS	LA ICP-MS	EPMA	EPMA	EPMA	LA ICP-MS
SiO ₂	0.03	-	-0.54	-6.93	-	-0.78	-0.27	-1.05	-
TiO ₂	1.59	-	1.44	-0.14	-	0.86	-0.43	-0.29	1.24
Al_2O_3	1.65	-	-0.38	-	-	-1.52	-0.05	-1.56	-
Fe ₂ O ₃ T	-	-	0.19	-1.58	-	1.17	-	0.98	-
Fe(II)O	0.46	-	-	-	-	-	1.33	-	-
MnO	-8.76	-	1.83	-1.35	-	0.24	1.30	2.36	-
MgO	0.49	-	-0.72	-0.84	-	-0.68	-0.72	-2.64	-
CaO	-0.34	-	-0.39	2.29	-	-0.80	0.10	-0.97	-
Na ₂ O	-1.43	-	1.64	-2.92	-	-1.20	1.92	-0.64	-
K ₂ O	0.92	-	0.21	0.21	-	0.60	-0.01	0.96	-
P ₂ O ₅	-3.45	-	1.07	-3.05	-	-0.50	2.64	-0.89	-
Ва	-	-0.53	-3.25	1.23	1.01	-	-	2.36	0.93
Ce	-	-1.03	-	-0.05	0.47	-	-	-	0.32
Co	-	-0.10	-	-0.70	-	-	-	-	0.45
Cr	-	-	-	-	-	-	-	-	-
Cs	-	-0.98	-	-	-	-	-	-	0.18
Cu	-	-	-	-	-	-	-	-	-
Dy	-	-1.39	-	-	-1.29	-	-	-	0.19
Er	-	-1.42	-	-	-1.01	-	-	-	0.11
Eυ	-	-1.36	-	-	-0.41	-	-	-	0.22
Ga	-	0.00	-	-	-	-	-	-	-
Gd	-	-1.57	-	-	-1.24	-	-	-	0.54
Hf	-	-1.56	-	-	-0.75	-	-	-	0.68
Ho	-	-	-	-	-1.00	-	-	-	0.32
La	-	-0.88	-	0.27	-0.62	-	-	-	0.86
Lu	-	-1.10	-	-	-0.78	-	-	-	0.41
Nb	-	-0.78	-	-	1.03	-	-	-	0.81
Nd	-	-1.13	-	0.86	-0.50	-	-	-	0.59
Ni	-	-1.58	-	-	-	-	-	-	-0.13
Pb	-	-0.21	-	-0.32	-0.74	-	-	-	1.22
Pr	-	-1.26	-	0.00	-0.22	-	-	-	-0.34
Rb	-	-0.78	-	0.30	-	-	-	-	-0.06
Sc	-	-	-	-0.13	-	-	-	-	1.80
Sm	-	-1.31	-	-	-0.63	-	-	-	0.32
Sr	-	-1.31	-	0.83	-0.20	-	-	-	0.53
Ta	-	-0.98	-	-	-0.48	-	-	-	0.70
Tb	-	-	-	-	-0.86	-	-	-	-
Th	-	-1.07	-	0.41	-0.94	-	-	-	0.91
TI	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-0.29	-	-	-	-
U	-	-1.12	-	-0.92	0.28	-	-	-	-0.18
V	-	-1.11	-	-0.83	-	-	-	-	-1.25
Y	-	-1.38	-	-	-2.05	-	-	-	0.19
Yb	-	-0.75	-	-	-0.73	-	-	-	0.45
Zn	-	-	-3.47	-	-	-	-	-	-
Zr	-	-1.70	-	-0.60	-1.60	-	-	-	0.95

Table 7. G-Probe-1. List of participating laboratories

Dr David Steele, University of Tasmania, Hobart, Tasmania, Australia.

Marc Norman, University of Tasmania, Hobart, Tasmania, Australia.

Dr Jon Woodhead, University of Melbourne, Victoria, Australia.

Karl Ettinger, Karl Franzens University of Graz, Austria.

Nelson Fava, Instituto de Geociencias, Universidade de Brasilia, Brazil.

Jessica Tallarico, Research Centre, Santa Luzia, Minas Gerais, Brazil.

Ron Chapman, University of Manitoba, **Canada.**

Paul J. Sylvester, Memorial University of Newfoundland, St. John's, NF, Canada.

Glenn Poirier, McGill University, Montreal, Quebec, Canada.

Dr L. Dempirov / Dr J. Fryda, Czech Geological Survey, Prague 5 - Barrandov, The Czech Republic.

Prof ZHOU Jianxiong, Institute of Mineral Deposits, Beijing, PR China.

Dr JIANG Neng, Institute of Geology and Geophysics, Beijing, P.R. China.

Sidsel Grundrig, Aarhus University, Denmark.

Françoise Augustin, BRGM, Orleans, France.

Rémi Freydier, LMTG, Toulouse, **France.**

Philippe de Parseval, Université Paul Sabatier, Toulouse, France.

Denis Mangin, CRPG-CNRS, Vandoeuvre-lès-Nancy, France.

Dr Hiltrud Mueller-Sigmund, Mineralogisches Institut, Freiburg, Germany.

Dr Hans-Peter Meyer, Universitaet Heidelberg, Germany.

powdered sample. Note that these points will always centre on the $X_{\rm a}$ value plotted on the line below, since $X_{\rm a}$ is the median of these data.

Technique code 2: Data points represent determinations made by electron microprobe analysis. Note that the majority of the microprobe major element data was reported by this technique. Dieter Rhede, GeoForschungsZentrum Potsdam, Potsdam, Germany.

Guillermina Gonzalez Mancera / Dr Ignacio S. Torres Alvarado, UNAM, Ciudad Universitaria, Mexico.

Paul Mason, University of Utrecht, The Netherlands.

Debra Chappell, University of Otago, Dunedin, New Zealand.

Børre Davidsen / Belinda Flem, Geological Survey of Norway, Trondheim, **Norway.**

Ludmila A. Pavlova, Institute of Geochemistry, Irkutsk, Russia.

Dr Deon de Bruin, Council for Geoscience, Pretoria, South Africa.

Andreas Spath, University of Cape Town, Rondebosch, South Africa.

Detlef Guenther / Ingo Horn, Swiss Federal Institute of Technology, ETH Zurich, Switzerland.

Dr Kym Jarvis, Kingston University, Kingston upon Thames, UK.

Andrew Beard, Birkbeck College, University of London, UK.

Dr Teresa Jeffries, The Natural History Museum, London, **UK.**

John Spratt, The Natural History Museum, London, UK.

A.G. Tindle, The Open University, Milton Keynes, **UK.**

M.T. Styles, British Geological Survey, Keyworth, Nottingham, **UK.**

Dr Fergus G.F. Gibb, University of Sheffield, UK.

Jeff Thole, Macalester College, St. Paul, MN, U.S.A.

Peter McSwiggen, University of Minnesota, Minneapolis, USA.

Christos Hadidiacos, Carnegie Institution of Washington, Washington, DC, USA.

Technique code 3: Data determined by ED/WD scanning electron microscope.

Technique code 4: Data determined by ion probe microanalysis.

Technique code 5: Data determined by laser ablation-inductively coupled plasma-mass spectrometry.

Note that the majority of the microprobe trace element data was reported by this technique.

In the case of iron, some microprobe laboratories reported data as FeO, some as Fe_2O_3 . When plotting elemental data in Figure 1, all results were first converted to Fe_2O_3 .

In evaluating these results, interest lies in:

(i) Whether there is significant bias between the bulk data (technique code 1) and results contributed by individual microprobe techniques (technique codes 2 to 5).

(ii) The overall spread of data from microprobe techniques compared to bulk analytical methods.

(iii) Whether assumptions about the target precision and derived z-score limits match the contributed microprobe results.

These comparisons are largely based on EPMA and LA-ICP-MS techniques, since these were the methods used to report the majority of the microprobe data.

Bias between microprobe data and bulk analytical results: The only element for which significant bias is observed was magnesium. Although the majority of the electron microprobe results are still within the -2 < z < 2 limits, they cluster about a value that is approximately 0.12% m/m below the median of the bulk analytical results. There is also a suggestion that the electron microprobe Fe₂O₃ data plots about 0.2% m/m higher than the median bulk data and that a few trace elements by LA-ICP-MS (e.g., Zr, Tm, Dy, Er plot slightly lower than the median bulk data, an effect that may be influenced by the tight clustering of the bulk results. However, overall, the agreement between microprobe and bulk analytical results is remarkably good.

Overall spread of microprobe data: When evaluating the quality of microprobe data, as judged by the spread of reported results, data by LA-ICP-MS for the elements Ba, Cs, Ni, Sc, Sr, U and a number of REE (e.g., Ho, Tb, Tm) is comparable to the bulk chemical results. Zirconium is also comparable, but largely because the spread of bulk data is wider than for other trace elements, possibly indicating interlaboratory bias in the determination of this element. In general, the precision of major elements reported by EPMA is not as good as that from the bulk techniques, accepting that laboratories asked to undertake the bulk analysis of the basaltic glass were specially selected. The spread of LA-ICP-MS data for Nb and one or two of the LREE (e.g., La) appears to be significantly wider than for other elements.

Target precision for microprobe techniques: In evaluating the overall performance of microprobe laboratories that contributed data to this round, the majority of the data fit within the -2 < z < 2 limits indicating that these laboratories are complying with the "Class 2" precision standard described above. A more detailed evaluation of these data will be required to judge whether a more demanding standard should be adopted for future G-probe proficiency testing rounds, to satisfy fitness-for-purpose requirements relevant to the modern use of microprobe data.

Participation in future rounds

The benefit from proficiency testing arises from regular participation and the organisers hope to run further rounds of this proficiency testing programme in the near future.

Acknowledgements

The authors are very grateful to Liz Lomas and Pete Webb (OU) for valued assistance with this work and for the support of Jean Kane and Michael Wiedenbeck for help and encouragement in the earlier stages of planning this programme.

The authors are also very grateful to analysts who agreed to contribute the bulk analytical data listed in Table 3. In particular: H. Deng, L. Qi, G. Zhou, Peter Dulski, Diane Johnson, Thea van Meerten, Mireille Polvé, Phil Robinson, Rick Sanzolone, Michel Valladon, Helen Waldron, John Watson, Peter Webb and John Wolff, and all those microprobe laboratories whose participation ensured the success of this evaluation.

This programme was organised on behalf of the International Association of Geoanalysts.

References

Horwitz W., Kamps L.R. and Boyer K.W. (1980) Quality assurance in the analysis of foods for trace constituents. Journal of the Association of Official Analytical Chemists, 63, 1344-1354.

references

Potts P.J., Thompson M., Kane J.S., Webb P.C. and Carignan J. (2000a)

GeoPT6 - An international proficiency test for analytical geochemistry laboratories - Report on round 6 (OU-3: Nanhoron microgranite) and 6A (CAL-S: CRPG limestone). **Unpublished Report**, 52pp.

Potts P.J., Thompson M., Kane J.S. and Petrov L.L. (2000b)

GeoPT7 - An international proficiency test for analytical geochemistry laboratories - Report on round 7 (GBPG-1 Garnet-biotite plagiogneiss). **Unpublished Report**, 35pp.

Potts P.J., Thompson M., Kane J.S., Webb P.C. and Watson J.S. (2001a)

Geo*PT8* - An international proficiency test for analytical geochemistry laboratories - Report on round 8 / February 2001 (OU-4 Penmaenmawr microdiorite). **Unpublished Report**, 34pp.

Potts P.J., Thompson M., Kane J.S., Webb P.C. and Watson J.S. (2001b)

GeoPT9 - An international proficiency test for analytical geochemistry laboratories - Report on round 9 / July 2001 (OU-6 Penrhyn slate). **Unpublished Report**, 36pp.

Potts P.J., Thompson M., Kane J.S., Webb P.C. and Watson J.S. and Wang Yimin (2002)

GeoPT10 - An international proficiency test for analytical geochemistry laboratories - Report on round 10 / December 2001 (CH-1 marine sediment). **Unpublished Report, 3**9pp.

Thompson M. (2000)

Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing. **The Analyst**, **125**, 385-386.

Thompson M., Potts P.J., Kane J.S. and Webb P.C. (1996)

GeoPT1. International proficiency test for analytical geochemistry laboratories - Report on round 1. Geostandards Newsletter, **20**, 295-325.

Thompson M., Potts P.J., Kane J.S., Webb P.C. and Watson J.S. (1998)

GeoPT2. International proficiency test for analytical geochemistry laboratories - Report on round 2. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 22, 127-156.

Thompson M., Potts P.J., Kane J.S. and Chappell B.W. (1999)

GeoPT3. International proficiency test for analytical geochemistry laboratories - Report on round 3. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 23, 87-121.

Thompson M., Potts P.J., Kane J.S., Webb P.C. and Watson J.S. (2000a)

GeoPT4. International proficiency test for analytical geochemistry laboratories - Report on round 4. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 24, E1-E37 (published in the electronic journal edition).

Thompson M., Potts P.J., Kane J.S. and Wilson S. (2000b)

GeoPT5. International proficiency test for analytical geochemistry laboratories - Report on round 5. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 24, E1-E28 (published in the electronic journal edition).