

G-Probe 25a — an International Proficiency Test for Microanalytical Laboratories — Report on Round 25a (Phonolite glass, KPho-2G) / November 2021

Dieter Garbe-Schönberg¹, Peter C. Webb^{2*}, Donald B. Dingwell³ and Philip J. Potts²

 ¹CAU Kiel University, Institute of Geosciences, Ludewig-Meyn-Strasse 10, 24098 Kiel, Germany.
 ² Retired from the Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
 ³ Department of Earth and Environmental Sciences,
 LMU - University of Munich, Theresienstrasse 41, 80333 München, Germany
 *Corresponding author, Peter Webb: e-mail <u>gprobe.iag@gmail.com</u>

Keywords: proficiency testing, quality assurance, microanalysis, G-Probe 25a, Round 25, KPho-2G, Phonolite glass

Abstract

Results are presented for Round 25a of the G-Probe Proficiency Testing programme for microanalytical laboratories, organised by the International Association of Geoanalysts (IAG). The test material distributed in this round of G-Probe was the Phonolite glass, KPho-2G, prepared at Kiel University, after remelting at LMU Munich. In this report, the data contributed by 35 laboratories are listed, together with an assessment of consensus values as composition location estimators, consequent z-scores and a series of charts that show the distribution of contributed results and reveal the overall performance of participating laboratories. Assigned values were conferred for 40 elements, and provisional values for a further 9, out of 71 elements reported but 8 were in insufficient numbers to assess in any way.

Introduction

This twenty-fifth round of G-Probe, the international proficiency testing programme for microanalytical laboratories, was conducted in a similar manner to recent rounds. The programme is organised by the IAG and is conducted in a manner that conforms with the recently published G-Probe Protocol (IAG, 2020).

To accommodate difficulties encountered with shipments and delays in laboratory readiness due to the Coronavirus pandemic, the original deadline for submission of results for this round was extended by several weeks with the benefit that 35 laboratories reported their results. All data submitted were processed using the online system, as were the automated sections of this report.

The overall aim of the programme is to provide participating laboratories with *z*-score information for their reported measurement results so that each laboratory can decide whether the quality of their data is satisfactory in relation both to the G-Probe fitnessfor-purpose criterion and to the results submitted by other laboratories contributing to the round. In circumstances where *z*-scores are unsatisfactory, a participating laboratory is encouraged to investigate its procedures for unsuspected analytical bias and to take corrective action if it appears justified. The programme is designed to be part of the routine quality assurance procedures employed by microanalytical geochemistry laboratories.

G-Probe Steering Committee:

D. Garbe-Schönberg (principal organiser and provider of KPho original rock glass), P.C. Webb (results coordinator and website administrator), D.B. Dingwell (producer of KPho-2G glass), P.J. Potts (results reviewer),
M. Thompson (statistical advisor), C.J.B. Gowing (distribution coordinator), L. Danyushevsky, R. Mertz-Kraus and A. Kronz (analytical advisors).

Timetable for Round 25a of G-Probe:

Distribution of test material: June 2021 Results submission deadline: 6th October 2021 Release of report: November 2021

G-Probe 25a Test Material details

The phonolite starting material for this test sample was collected from the Society Seamounts in the SW Pacific during cruise SONNE 65 MIDPLATE-II (Stoffers et al., 1990). A dredge deployed north of the volcanic island, Mehetia recovered glassy tephriphonolite from ~3000 m water depth. The original submarine glass was pulverized and re-melted twice for homogenization and removal of water by fusion in an iron-saturated platinum crucible in air, and then stirred at 1500 °C for 24 h at 40 r.p.m. This procedure was undertaken in Don Dingwell's laboratory at LMU Munich. The mass of glass obtained was drilled carefully, avoiding glass that was in direct contact with the crucible, then it was fragmented, and chips were hand-picked, discarding those with a lustre from the melt surface. Two chips were distributed as test materials to each participant either as loose fragments or mounted into 1/2" epoxy plugs manufactured and polished at University of Göttingen, Germany (A. Kronz).

For homogeneity testing following ISO Guide 35:2017, subsets of 10 chips were distributed to 4 international laboratories for analysis of 10 points per chip by EPMA and LA-ICP-MS to assess between-chip heterogeneity. In addition, one chip was analysed at 100 points for estimating within-chip micro-heterogeneity. After careful assessment of all these homogeneity data, the phonolite glass fragments were considered suitable for use in this proficiency test. However, it was considered that certain specific elements (noted later) were heterogeneously distributed amongst the glass fragments.

Submission of results

For G-Probe 25a, participants were instructed to apply their routine measurement procedures to provide a measurement result for each glass fragment representative of its average composition (Result A and Result B). A total of 2340 measurement results submitted by 35 laboratories are listed in Table 1. Where results A and B were provided, the average was used for the subsequent data assessment. Of the resultant 1329 values reported for individual analytes, 1267 values were by LA-ICP-MS from 25 laboratories, 137 by EPMA from 12 laboratories, 27 by SEM from three laboratories, and one laboratory provided 35 values without defining its method.

Target values and results summary

Robust statistical procedures were used to derive a consensus value from the contributed data for each elemental component in the test material. These procedures included the evaluation of the Huber robust mean, the median for the dataset or a mode derived from a kernel density distribution as detailed by Thompson (2017). Evaluations of consensus values involved a critical assessment of distributions of results from ordered sequential charts for each analyte.

Consensus values were credited with assigned status on the basis that:

- (i) sufficient laboratories had contributed data for estimating a measurand (usually a minimum of 15);
- (ii) visual assessment gave confidence that a substantial proportion of the results distribution was symmetrically disposed about the consensus;
- (iii) the ratio of the uncertainty in the location estimate to the target precision (as defined below) was an acceptably small value; and
- (iv) where possible, an evaluation of measurement results by procedure was judged to provide no clear evidence of procedural bias among the measurement results from which the consensus was derived.

Where these criteria were nearly, but not fully met, measurands were credited with 'provisional' rather than 'assigned' status. Instances of provisional status were identified because either:

- (i) a smaller number of results (less than 15 but more than 8) contributed to the consensus, or
- (ii) the results were unduly dispersed in relation to the target precision (*H*_a, see below), or
- (iii) the distribution of results was significantly skewed
 (but not severely enough to preclude the recognition of a clear consensus), or

(iv) procedural bias was identified but a target value could nevertheless be recognised based on the most coherent part of the overall data distribution conforming approximately to a random sample from a normal distribution.

Where data were either insufficient in number, or the distribution was too variable or too highly skewed for the confident estimation of a consensus to provide *z*-scores, data distributions are presented for information only.

The resulting consensus values were those judged to be the best available estimates of the true composition of the test material and therefore suitable for use as target values for proficiency testing. It should be noted, however, that in many cases, these estimates are derived from a single analytical method.

Data distributions for those analytes given 'assigned' or 'provisional' status are presented in Figure 1, and those for which no status could be conferred are shown in Figure 2, 'for information'. Measurement results in the Figure 1 and 2 data distribution plots are presented in order of increasing magnitude and identified according to laboratory code. Data symbols are coded by colour and shape according to the method of measurement. For major elements, results were obtained by EPMA, SEM and LA-ICP-MS. In contrast with results of the basanite test material of the previous round, electron beam results are generally in good agreement with LA-ICP-MS results with the exception of Na₂O where method bias from some systematically low EPMA results is evident. Consensus values were generally well defined for most major elements, but less so for Na₂O and P₂O₅ which were credited only with provisional status.

For most trace elements there is no option other than to make assessments based on LA-ICP-MS data, and therefore concerns about the possibility of single method bias, noted above, must be kept in mind and the outcomes should be regarded with caution in the reflection of true values. Nevertheless, the derived consensus values represent the best that currently can be obtained and therefore are considered appropriate for the purposes of this proficiency test.

Several laboratories in this round required values of a major element oxide for internal standardisation of

LA-ICP-MS data. Values of 17.63 for AI_2O_3 , 55.68 for SiO_2 and 3.48 for CaO were provided for laboratories coded D4, D18, D20, D21, D37, D45, D51 and D53. Inspection of the results provided by these participants showed no detectable evidence that the use of these values had been responsible for any significant bias in datasets.

Table 2 lists assigned and provisional values for 9 major components and 39 trace elements in G-Probe 25a (KPho-2G). Data distribution charts for the 48 measurands that were judged to have satisfactory distributions for consensus values to be conferred with assigned or provisional status are shown in Figure 1. These are: SiO₂, TiO₂, Al₂O₃, Fe₂O₃T, MgO, CaO, Na₂O*, K₂O, P₂O₅*, Ba, Be, Bi*, Ce, Co, Cs, Cu, Dy, Er, Eu, Ga, Gd, Hf, Ho, In*, La, Li, Lu, Mn, Mo*, Nb, Nd, Ni*, Pb*, Pr, Rb, Sb*, Sm, Sr, Ta, Tb, Th, Tm, U, V, W, Y, Yb and Zr. Of these, values of the 8 analytes marked '*' were credited with provisional status for reasons given above.

Data distribution plots for the 11 analytes: Ag, As, Au, B, Cd, Cr, Ge, Sc, Sn, Tl, and Zn are plotted in Figure 2 for information only, as the data were either insufficient in number, or the data distribution was too highly dispersed or too highly skewed for the confident estimation of a consensus to provide *z*-scores.

Observations

The form of data distribution plots for most elements provides good justification for conferring assigned values. It was notable, however that data for some major elements exhibited moderately high (SiO₂, TiO₂, Al₂O₃) and low tails (Fe₂O₃, Na₂O, P₂O₅). While high SiO₂ and low P₂O₅ are mainly reported from LA-ICP-MS measurements, high Al₂O₃ and low Na₂O are more obvious in EPMA data, with the latter possibly caused by too high beam currents volatilizing Na during analysis. SEM data are also on the low side for Al₂O₃ and CaO, but high for TiO₂. Minor heterogeneity within and between some chips had been identified by EPMA for K₂O and P₂O₅ during homogeneity pre-tests but there appears to be no significant effect on the results.

A number of trace elements, including Cr, Mo, Ni, Sc and Zn exhibit strikingly high tails, and any consensus values can be regarded at best as provisional. For some elements an analysis of metadata using the Shiny App indicates that systems with a 193 μm laser frequently tend to provide more coherent data and therefore a better consensus (e.g., for Co, Cu, Nb, Ni). However, this does not necessarily mean that the laser wavelength itself is the cause of these trends.

In some instances, the form of data distributions and evidence from metadata were instrumental in making judgements of status that may not conform to every one of the normally required properties. For example, although the number of contributing data were barely sufficient, the distribution of Bi data was sufficient to warrant provisional status; the distribution of P₂O₅ data was suitable to confer provisional status despite a high statistical uncertainty leading to a relatively high ratio of uncertainty/Horwitz value; the high tail of the Mo distribution was produced exclusively by sector field instruments, whereas the data from quadrupole instruments provided a remarkably coherent dataset sufficient to confer provisional status. Similarly, the high tail in Cr data was produced by ICP-SF-MS and two ICP-MS/MS instruments. The high tail exhibited by Ni results contained only one result produced by a 193 µm laser whereas the remainder of the data from those systems provided a clear consensus and therefore warranted provisional status. The latter results involved the use of USGS materials for matrix-matched calibration while high Ni results were from calibrations using NIST61n series materials only.

The large spread in B data without a clear point of inflection did not allow a valid consensus to be recognised. The three lowest values for B were all reported by ICP-MS/MS instruments. For Sc the most coherent part of the distribution involved the lowest 8 values all of which were produced by 193 μ m laser devices, but on account of there being more than half as many values produced in the same way at substantially higher mass fractions and there being no clear point of inflection the dataset could not be credited with better than information status. For Sn although most of the data fall within 3.35 ± 0.5 mg/kg there was no clear consensus or point of inflection in the data, again information status was conferred.

One laboratory (D7) mistakenly entered uncertainty values for Result B and therefore is always anomalous.

Z-score analysis

Assessment of submitted results followed the strategy adopted in recent rounds of G-Probe (Wilson et al. 2019; Wilson et al. 2020; Garbe-Schönberg et al. 2021) and detailed in the G-Probe protocol (IAG, 2020). Based on an assessment of the variation of measurement results in earlier rounds, and in order to provide sufficient discrimination for the proficiency test to be helpful to participating laboratories, the fitness for purpose criterion applied throughout was provided by the modified Horwitz function:

where H_a is the standard deviation for proficiency, also referred to as the target precision, for each measurand; X_a , represented as a mass fraction, is the best estimate of the true composition, also known as the 'target value' (and may be credited with assigned or provisional status). The factor k = 0.01, which is regarded as appropriate for laboratories working to a 'pure geochemistry' standard of performance, where analytical results are designed for geochemical research and where care is taken to provide data of high precision and accuracy, sometimes at the expense of a reduced sample throughput rate.

Z-scores were calculated for the average measurement result submitted by each laboratory from:

$$z = [X - X_a] / H_a$$

where X is the (average) measurement result submitted, X_a is the target value (assigned and provisional) and H_a is the target precision (all as mass fractions).

Z-score values for results submitted to G-Probe 25a are listed in Table 3. *Z*-scores derived from provisional values of measurands are shown in italics.

Participating laboratories are invited to assess their performance using the following criteria:

Z-score results in the range -2 < z < 2 are considered to be 'satisfactory' (in the sense that no action is called for by the participant). If the z-score for any element falls outside this range, especially if it is outside the range -3 < z < 3, laboratories are advised to examine their procedures and, if necessary, take action to ensure that their determinations are not subject to unsuspected analytical bias.

Should a participating laboratory decide that this performance standard is not appropriate for assessment of their measurement results, they are invited to recalculate their *z*-scores by substituting the appropriate value of the standard deviation for proficiency testing, H_a , into the equation for the calculation of *z*-scores (i.e. $z = [X - X_a] / H_a$). Adoption of such an approach should include a justification as to why an amended value of H_a is more appropriate for assessment of their data.

Overall performance

A summary of the overall performance of individual laboratories for this round is plotted in multiple *z*-score charts in Figure 3. In these charts, the *z*-score performance for each element is distinguished by symbols that make it easy to identify whether the measurements results were satisfactory or gave *z*-scores that exceeded the action limits. This chart is designed to help individual laboratories judge their overall performance in this proficiency test. Note, however, that participants should always review their *z*-scores in accordance with their own fitness-forpurpose criteria.

Participation in future rounds

The benefit from proficiency testing arises from regular participation and laboratories are invited to contribute to Round 26 of G-Probe, the test samples for which will be distributed in spring 2022.

Acknowledgements

The authors wish to thank Thomas Meisel for development of procedures involving the Shiny App to facilitate the visualisation and analysis of proficiency testing datasets and to permit the derivation of modes according to Thompson (2017).

Help from Andreas Kronz (University of Göttingen) for preparation of high-quality polished mounts, and from five international laboratories for detailed homogeneity tests of glass chips is gratefully acknowledged. We also thank Andrea Mills and Charles Gowing (BGS, Keyworth) for arranging the dispatch and delivery of test materials.

References

Garbe-Schönberg D., Webb P.C., Wilson S.A., Mertz-Kraus R., and Potts P.J. (2021) G-Probe 24 — an International Proficiency Test for Microanalytical Laboratories — Report on Round 24 (Basanite glass, BKWE-1G) / February 2021. International Association of Geoanalysts: Unpublished report.

IAG (2020) Protocol for the Operation of the G-Probe Proficiency Testing Scheme. International Association of Geoanalysts (Keyworth, UK), 20pp.

<u>http://www.geoanalyst.org/wp-</u> <u>content/uploads/2020/08/G-Probe-protocol-August-</u> <u>2020.pdf</u>.

ISO (2017) GUIDE 35:2017(E): Reference materials – Guidance for characterization and assessment of homogeneity and stability. – ISO, Switzerland

Stoffers P. et al. (1990) Cruise Report SONNE 65 Midplate II – Hot Spot Volcanism in the Central Southpacific. – *Berichte – Reports, Geolog.-Paläontolog. Inst. CAU Kiel,* 40: 1-223. <u>https://doi.org/10.2312/reports-gpi.1990.40</u>

Thompson, M. (2017) On the role of the mode as a location parameter for the results of proficiency tests in chemical measurement. *Anal. Methods*, **9**, p.5534-5540.

Wilson S., Webb P.C. and Garbe-Schönberg D. (2019) G-Probe 22 – an International Proficiency Test for Microanalytical Laboratories – Report on Round 22 (Synthetic basalt, SynB-1G(GSC-2G)) / October 2019. 30pp. International Association of Geoanalysts: Unpublished report.

Wilson S., Webb P.C., Garbe-Schönberg, D., Potts P.J. and Danyushevsky, L. (2020) G-Probe 23 — an International Proficiency Test for Microanalytical Laboratories — Report on Round 23 (Norite glass, NoSM-1G) / February 2020. International Association of Geoanalysts: Unpublished report.

ADDENDUM — IMPORTANT NOTICE TO ANALYSTS

Change in uncertainty estimation for medians:

Note that in 2020 a change was made to the algorithm for estimating the uncertainty of median values compared to that used in previous rounds of G-Probe. The revised procedure was implemented for the first time for round 24 (G-Probe 24). As described in the new G-Probe protocol (IAG, 2020), median uncertainties are now increased by a factor of 1.2533. Therefore, when comparing uncertainties from this and future rounds with those from rounds previous to Round 24, those uncertainty values previously reported for medians should be increased by this factor.

Lab C	ada	D2A	D2B	D3A	D3B	D4A	D4B	D6A	D6B	D74	D7B	D8A	D8B
SiO2	a 100a-1	55.70	56.14	57.06	56.9/	5-74	545	55.5	55.7	56.71	0.82	55.42	55 381
3102	g 100g	33.79	30.14	37.00	30.94			33.5	35.7	30.71	0.02	33.42	33.301
1102	g 100g-1	1.59	1.59	1.572	1.568			1.58	1.58	1.61	0.007	1.558	1.557
AI2O3	g 100g-1	17.58	17.43	17.32	17.26			17.97	18.01	17.86	0.01	17.685	17.753
Fe2O3T	g 100g-1	7.06	7.03	6.933	6.909			7.02	7.01	7.09	0.01	6.948	6.936
MgO	g 100g-1	2.15	2.15	2.176	2.188			2.26	2.25	2.28	1.45	2.23	2.225
CaO	g 100g-1	3.54	3.51	3.417	3.388			3.63	3.65	3.52	51.2	3.569	3.582
Na2O	g 100g-1	5.39	5.35	5.317	5.362			5.49	5.47	4.86	0.06	5.294	5.255
K20	g 100g-1	5.27	5.22	5.311	5.398			5.29	5.33	5.46	0.003	5.378	5.377
P205	a 100a-1	0.96	0.93	0.918	1 018			0.881	0 899	0.91	0.009	0.919	0.932
Ag	ma ka ⁻¹	0.00	0.34	0.010				0.001	0.000	0.01	0.000	0.010	0.002
Ac	ma ka-1	3 15	2.47	1 225	2 060								
A5	nig kg	3.15	2.47	1.225	2.909								
Au	mg kg ·			7.000	- 1-0	7.04	0.40						
В	mg kg ⁻¹			7.899	7.476	7.31	6.49						
Ва	mg kg ⁻¹	985.440	947.720	1024	1024	920.2	1030.200						
Be	mg kg ⁻¹	3.73	3.7	3.856	3.973	3.63	3.81						
Bi	mg kg ⁻¹	0.033	0.021			0.03	0.03						
Br	mg kg-1												
Cd	mg kg ⁻¹	0.17	0.08										
Ce	mg kg-1	204.770	198.060	212.6	212.1	190.6	173.370						
СІ	mg kg ⁻¹												
Co	ma ka-1	5 34	5.36	5 288	5 106	5 41	5.68						
Cr	ma ka-1	0.04	0.00	0.502	0.783	6.04	8.34			1231	62		
	ma ka-1	0.00	0.00	1.064	0.000	0.04	0.04			1201	02		
05	ing kg ⁻	0.03	0.90	1.004	0.000	0.00	0.70						
	rng kg ⁻¹	5.//	5.28	5.595	0.09	5.52	0.33						
ру	mg kg ⁻¹	10.46	10.22	11.04	11.11	10.05	10.67						
Er	mg kg ⁻¹	4.75	4.63	4.935	4.939	4.42	4.72						
Eu	mg kg ⁻¹	5.59	5.73	5.742	5.707	5.34	5.74						
Ga	mg kg ⁻¹	34.79	34.82	30.25	29.74								
Gd	mg kg ⁻¹	22.22	22.97	16.37	16.31	14.29	15.51						
Ge	mg kg ⁻¹	1.97	1.86										
Hf	mg kg ⁻¹	30.04	29.31	31.44	31.69	29.01	31.03						
Hg	mg kg ⁻¹												
Но	mg kg ⁻¹	1.8	1.75	1.888	1.89	1.7	1.87						
1	mg kg-1												
In	mg kg ⁻¹	0.12	0.11			0.13	0.13						
Ir	mg kg ⁻¹												
	ma ka-1	88.31	86.31	94 41	94 12	86 72	93 89						
11	ma ka-1	12.78	17.22	13.86	13.87	14.14	15.3						
L.,	ma ka-1	0.55	0.53	0.562	0.552	0.51	0.53						
Ma	mg kg-1	1106 600	1105 900	1002	10.552	1267 400	1218 600	1190	1000	1000	70	1020	1001
Ma	nig kg	1190.000	1195.690	1223	1220	1207.400	1218.000	1109	1232	1230	70	1239	1231
NIO	mg kg	04.57	10.06	9.514	8.037	100.0	37.9						
Nb	mg kg ⁻¹	94.57	94.13	90.75	89.83	106.8	111.2						
Nd	mg kg ⁻¹	100.3	97	107.8	107.6	86.6	109.2						
Ni	mg kg ⁻¹	5.82	6	5.016	3.695	7.87	5.03			134	76		
Pb	mg kg ⁻¹	9.39	7.46	6.691	9.695	9.48	9.14						
Pd	mg kg ⁻¹												
Pr	mg kg ⁻¹	24.49	23.8	26.21	26.11	23.11	26.45						
Pt	mg kg ⁻¹												
Rb	mg kg ⁻¹	101.840	101.090	98.77	99.63	87.05	105.3						
Re	mg kg-1												
Rh	mg kg-1												
s	mg kg ⁻¹												
Sb	mg kg ⁻¹	0.39	0.36			0.36	0.35						
Sc	mg kg ⁻¹	13.19	12.86	8.875	8.805	13.87	13.71						
Se	ma ka-1												
Sm	ma ka ⁻¹	10.21	18.54	20.65	20.58	18.25	21.14						
6m	ma ka-1	3 17	2.92	2 753	3 106	3.01	2 67						
311	ilig kg	5.17	2.02	2.735	5.100	5.91	5.07						
sr	mg kg ^{-,}	592.450	585.820	632	629.7	550.9	664.9						
la	mg kg⁻¹	4.9	4.88	4.942	4.942	5.07	5.53						
1 b	mg kg ⁻¹	2.04	1.99	2.119	2.127	1.78	2.42						
Te	mg kg ⁻¹												
Th	mg kg ⁻¹	13.29	12.84	13.58	13.61	11.1	14.97						
ті	mg kg ⁻¹	0.06	0.04	0.023	0.061	0.06	0.06						
Tm	mg kg ⁻¹	0.77	0.75	0.8	0.810	0.67	0.88						
U	mg kg-1	4.64	4.67	4.835	4.439	4.57	4.42						
v	mg kg ⁻¹	13.69	13.77	13.97	13.6	13.49	13.03						
w	mg kg ⁻¹	1.44	1.46	1.662	1.523	1.48	1.45						
Y	mg kg ⁻¹	51.43	50.7	52.52	52.13	45.41	50.78						
Yb	mg kg-1	3.95	3.9	4.206	4.256	3.81	4.21						
Zn	mg kg ⁻¹	168.110	158.640	152.4	160.3	210.690	226.990						
Zr	mg kg ⁻¹	1352.430	1330.860	1398	1399	1310.800	1422.700						

Lab C	ada	D10A	D10B	D11A	D11B	D12A	D12B	D13A	D13B	D14A	D14B	D16A	D16B
Lab Co	50e	55 20	DIUD	55 16	55 19	DIZA	0120	DISA	0130	55 92	56.1	50 42	59.32
5102	g loog -	55.29		55.10	55.16	4.00				55.65	30.1	36.43	36.33
102	g 100g-1	1.58		1.67	1.68	1.29				1.6	1.56	1.62	1.63
AI2O3	g 100g ⁻¹	17.58		17.33	17.36	15.3				17.59	17.71	17.04	17
Fe2O3T	g 100g ⁻¹	7.98		6.18	6.22	5.87				7.06	7.07	6.84	6.81
MgO	g 100g-1	2.14		2.21	2.18	1.66				2.27	2.19	2.16	2.16
CaO	g 100g ⁻¹	3.5		3.45	3.42	3.13		3.7	3.7	3.55	3.42	3.5	3.5
Na2O	g 100g-1	5.42		5.33	5.32	4.39				5.14	5.1	4.8	4.84
K2O	g 100g-1	5.61		5.51	5.52	5.24				5.36	5.19	5.43	5.47
P2O5	g 100g-1			0.79	0.81	0.694				0.91	0.84	0.86	0.94
Aq	mg kg ⁻¹					0.1							
As	ma ka-1					1.57							
Δ	ma ka-1												
P .	ma ka-1	8 38				10.4							
D .	mg kg	0.00				005		010.950	005.010	070	091		
ва	mg kg	992				903		910.650	903.010	979	901		
Be	mg kg ⁻ '					3.83							
Bi	mg kg ⁻¹									-			
Br	mg kg ⁻¹												
Cd	mg kg ⁻¹												
Ce	mg kg ⁻¹	197				185		182.462	182.012				
CI	mg kg ⁻¹					180				274	57		
Co	mg kg ⁻¹	5.31				4.76		4.806	4.794				
Cr	mg kg-1	0.947				0.898		3.815	3.724				
Cs	mg kg-1	0.832				0.737		0.934	0.881				
Cu	mg ka-1	5.54				4,68							
Dv	ma ka-1	0.04				9.67		9.547	0 508				
-, Fr		1 10				12		1 247	1 2/12				
-	mg kg	4.19				4.5		4.247	4.240				
Eu	mg kg	5.40				00.5		5.029	4.908				
Ga	mg kg ⁻¹	30.5				23.5							
Gd	mg kg ⁻¹	14.5				14		13.586	13.61				
Ge	mg kg ⁻¹	3.09				1.31							
Hf	mg kg ⁻¹	28.8				28.8		28.043	28.178				
Hg	mg kg ⁻¹												
Но	mg kg ⁻¹	1.72				1.66		1.69	1.685				
I	mg kg ⁻¹												
In	mg kg ⁻¹					0.113							
lr	mg kg ⁻¹												
la	ma ka-1	92				84.5		84.8	84,582				
11	ma ka-1	14.6				13.5		12 833	12.636				
<u>-</u>	ma ka-1	0.407				0.5		0.501	0.486				
Lu Ma	mg kg	0.497				0.5		0.301	0.400	1040	4077		
Mn	mg kg	1172				1008		1184.350	1182.130	1240	1277		
Mo	mg kg ⁻ '	9.02				16.9		70.500	70.040				
Nb	mg kg ⁻¹	78.4				75.6		78.522	78.818				
Nd	mg kg ⁻¹	97.4				93.1		93.075	93.192				
Ni	mg kg ⁻¹	5.97				8							
Pb	mg kg ⁻¹	9.13				6.67		6.957	7.562				
Pd	mg kg ⁻¹												
Pr	mg kg ⁻¹	23.3				22.9		23.114	22.992				
Pt	mg kg ⁻¹												
Rb	mg kg-1	104				86.2		92.964	93.924	89	79		
Re	mg kg-1			1		1	1	1				1	
Rh	mg kg-1			i i		i i	i i	l					
s	ma ka-1												
sh	ma ka-1					0.350					-		
80	ma ka-1	10 F				0.009							
30	mg Kg ⁻	12.5				0.34			<u> </u>				
50	mg kg ⁻¹	L			L	3.55							L
Sm	mg kg-1	18.9				18.11		17.902	18.112				
Sn	mg kg-1		L			3.2							
Sr	mg kg ⁻¹	614				560		593.074	597.362	694	648		
Та	mg kg-1	4.45				4.1		4.132	4.174				
Tb	mg kg-1	1.91				1.83		1.876	1.859				
Те	mg kg-1												
Th	mg kg-1	12.5				12.4		12.017	11.886				
т	mg kg-1	0.056											
Tm	ma ka-1	0.698				0.705		0.705	0.692				
	ma ka-1	4 36				4.23		4 202	3 922				
v	ma ka-1	12.2				11.5		12 772	12 52				
v 	ing Kg	10.0				11.0		12.113	12.00		-		
vv	mg Kg ⁻¹	1.40				1.39		45.000	45 30 4				
Y Na	mg kg ⁻¹	46.2				45.3		45.886	45.734				
Yb	mg kg-1	3.74				3.68		3.732	3.788				
Zn	mg kg-1	190				151							
IZr	mg kg ⁻¹	1275	1	1	1	1199	1	1209.385	1208.510	1219	1187	1	1

		D /74	D.(70	Dias	D 40D	5494	B 405				5045		
Lab Co	ode	D17A	D17B	D18A	D18B	D19A	D19B	D20A	D20B	D21A	D21B	D22A	D22B
SiO2	g 100g-1	55.57		55.68	55.68	55.64	56.12	54	54.9	58.56		55.93	56.01
TiO2	g 100g-1	1.545		1.51	1.52	1.56	1.52	1.49	1.49	1.675		1.56	1.56
AI2O3	g 100g-1	17.381		17.48	17.47	17.84	17.89	16.9	17.3	18.97		17.54	17.54
Fe2O3T	a 100a-1	6 864		6.6	6.65	6.66	6.8	6.67	6.66	6 864		6.92	6.97
MaQ	g 100g-1	2 200		2.19	2.10	2.25	2.24	2.09	2.14	0.001		2.10	2.19
MigO	g 100g	2.209		2.10	2.19	2.25	2.24	2.00	2.14			2.19	2.10
CaO	g 100g-1	3.583		3.61	3.62	3.5	3.51					3.54	3.54
Na2O	g 100g-1	5.267		5.13	5.16	5.53	5.26	5.1	5.21			5.39	5.38
K2O	g 100g-1	5.223		5.2	5.26	6.05	5.41	5.21	5.23			5.42	5.44
P2O5	g 100g-1	0.911		0.91	0.91	0.86	1	0.87	0.87	1.203		0.96	0.93
Aa	mg kg ⁻¹			0.26	0.23			0.22	0.22				
Δs	ma ka-1			1 92	2 36			2.8	2 54				
A.,	ma ka-1			1.02	2.00			2.0	2.04				
Au _	ilig kg			0.55				0.05	10.00				
в	mg kg ⁻¹			6.55	6.4			9.35	10.28				
Ва	mg kg ⁻¹	1093.690		987.9	982.3	1143.535	1043.414	1042	997	957.3			
Be	mg kg-1			2.5	2.57			3.96	3.67				
Bi	mg kg-1			0.038	0.038								
Br	mg kg-1												
Cd	ma ka-1							0.24	0.19				
00	ing kg	010.400		200.0	200	040 555	010 070	0.24	0.15	100.1			
Ce	ilig kg	210.400		200.0	200	246.000	210.070	214	204	190.1			
CI	mg kg-1												
Co	mg kg ⁻¹	4.96		5.24	5.18	7.047	5.477	5.16	5.19				
Cr	mg kg-1	1.26		2.7	2.92	2.33	1.156	1.37	1.49	2.826			
Cs	mg kg ⁻¹	0.78		0.9	0.84	1.075	0.961	0.85	0.81				
Cu	ma ka-1			7 25	7 07			9.69	9 71				
	ma ka-1	10.71		10.99	10.71	11 5/1	0.275	11	10.2	10.10			
	ing kg	10.71		10.00	10.71	F 4 4 4	9.210	11	10.3	10.10			
	mg kg ⁻ '	4.79		4.84	4.81	5.144	3.996	4.87	4.63	4.544			
Eu	mg kg ⁻¹	5.94		5.66	5.59	6.02	5.347	5.83	5.5	5.338			
Ga	mg kg ⁻¹			28.4	28.2	34.928	32.626	30.1	29.4	31.79			
Gd	mg kg-1	15.82		16.39	16.27	17.304	13.626	15.6	15	14.72			
Ge	mg kg ⁻¹			1.97	2.19	2.294	3.259	2.18	2.41				
Hf	ma ka-1	31 77				34 193	24 893	31.1	29.4	29.89			
111 11 <i>a</i>	ma ka-1	01.77				04.100	24.000	01.1	20.4	20.00			
Hg	mg kg ·	1.05		4.00		0.04	1 500	1.00	1 70	4 700			
Но	mg kg-1	1.85		1.82	1.84	2.01	1.562	1.86	1.78	1.799			
1	mg kg-1												
In	mg kg-1							0.12	0.12				
lr	mg kg-1												
la	ma ka-1	96.68		94.8	94.5	101.207	86.928	95.2	90.9	88.58			
1:	ma ka-1	00.00		12.1	12.4	11 664	16.459	12.0	12.5	00.00			
	ilig kg	0.50		13.1	13.4	11.004	10.436	12.9	13.3	0.505			
Lu	mg kg-1	0.56		0.55	0.55	0.576	0.458	0.56	0.52	0.525			
Mn	mg kg-1	1196.800		1154.600	1169			1188	1186	1256			
Мо	mg kg-1			9.08	7.3			7.92	8.58				
Nb	mg kg-1	97.15		85.7	86.1	119.131	93.095	88.6	86.1	85.55			
Nd	ma ka-1	108,120		106.3	105.8	111.270	98.004	107.6	102.5	99.41			
Ni	ma ka-1	3.51		5.28	5 18	12 532	0.240	1 92	5.95	12.18			
NI	ilig kg	3.31		5.20	5.10	12.332	9.249	4.92	3.93	12.10			
РЬ	mg kg-1	9.24		7.84	8.6	7.625	8.078	9.53	8.62	8.307			
Pd	mg kg-1												
Pr	mg kg ⁻¹	26.97		25.4	25.4	29.859	24.748	26.2	25	24.29			
Pt	mg kg ⁻¹												
Rb	mg kg ⁻¹	98.8		96	96.5	118.891	107.390	101.6	98	100.1			
Re	ma ka-1												
Rh	ma ka-1												
	-11g rvg												
s	mg kg-1												
Sb	mg kg ⁻¹			0.38	0.39			0.37	0.37				
Sc	mg kg ⁻¹	10.93		9.9	9.77	12.412	9.638	9.06	9.12				
Se	mg kg ⁻¹												
Sm	mg kg-1	20.82		20.44	20.04	22.24	18.167	20.3	19.3	18.92			
Sn	ma ka-1			2.87	3.12			3.8	3.76				
er.		646 540		61/ 6	614.4	61/ 12/	611.640	640	621	611 7			
3	ing Kg 1	040.040		014.0	014.4	014.124	4 0 4 0	040	4.2	4.540			
Ia	mg kg ⁻¹	5.3				0.04	4.043	4.85	4.0	4.543	L		L
Tb	mg kg ⁻¹	2.07				2.316	1.784	2.09	1.99	1.98			
Те	mg kg ⁻¹												
Th	mg kg ⁻¹	13.83		12	12.5	15.36	11.723	13.6	12.8	12.62			
ті	mg kg ⁻¹							0.08	0.05				
Tm	ma ka-1	0.78		0.77	0.77	0 846	0.653	0.8	0.75	0 743			
	ma ke-1	4.5		A 47	1 20	5.0-10	/ 012	A 47	1.04	1 201			
<u>,</u>	ing Kg 1	4.0		4.47	4.32	10.000	4.313	4.47	4.24	4.304			
v	mg kg ⁻¹	13.22		13.0	13.8	10.986	14.39	13.2	13.3	13.24			
w	mg kg ⁻¹							1.56	1.45	1.56			
Y	mg kg ⁻¹	49.36		52.6	51.6	57.475	41.748	50.2	48.8	47.05			
Yb	mg kg ⁻¹	4.15		4.13	4.02	4.478	3.578	4.15	3.95	3.947			
Zn	mg kg ⁻¹			180.2	180.3			179	174				
Zr	mg ka-1	1385.730		1371.800	1364.100	1560.186	1101.324	1350	1312	1308			
I — ·	00												

		D244	D24P	D274	D27P	D29A	D20D	D224	D22P	D22A	D22D	D244	D24B
Lab Co	ode	D24A	D24B	D27A	D27B	D28A	D28B	D32A	D32B	D33A	D33B	D34A	D34B
SiO2	g 100g-1	55.57	55.56	55.680		56.22	56.01			56.39	56.64	56.36	55.83
TiO2	g 100g-1	1.58	1.57	1.564		1.55	1.56			1.54	1.52	1.569	1.575
AI2O3	g 100g-1	17.91	17.91	17.606		17.52	17.8			17.82	17.8	17.89	17.87
Fe2O3T	g 100g-1	6.97	6.94	7.147		6.97	7.03			6.84	6.87	7,105	7.017
MaQ	g 100g-1	2 16	2 17	2 2 1 9		2.23	2 21			2 29	23	2 166	2 19
MgO GeO	- 4001	2.10	2.11	2.210		2.20	2.21			2.20	2.0	2,100	2.10
CaU	g luug .	3.30	3.00	3.371		3.00	3.01			5.02	3.03	3.013	3.003
Na2O	g 100g ⁻¹	5.57	5.56	5.296		5.3	5.26			5.02	5	5.441	5.437
K2O	g 100g-1	5.51	5.49	5.341		5.45	5.42			5.5	5.47	5.421	5.405
P2O5	g 100g-1	0.89	0.9	0.908		0.883	0.829			0.96	0.96	0.933	0.927
Ag	mg kg ⁻¹			0.170		0.022	0.026						
As	mg kg ⁻¹			1.924		1.74	0.99						
Διι	ma ka-1			0.033		0.005	0.006						
Au	ma hait			7 101		7.00	0.000						
в	mg kg ·	1000 110	1017.050	7.121		1.22	9	1000	1055			070	1005
Ва	mg kg ⁻¹	1020.140	1017.950	1029.136		1004	1003	1026	1055			972	1025
Be	mg kg ⁻¹	4.06	3.92	3.922		4.6	4.16	3.92	4.19				
Bi	mg kg ⁻¹					0.04	0.035						
Br	mg kg ⁻¹					56.2	42.6						
Cd	mg kg ⁻¹			0.236		0.49	0.32	0.19	0.15				
Ce	ma ka-1	211.030	210 850	212 933		203	204	205.7	210.1			199	210
00	ma ka-1	211.000	210.000	212.000		£200	404	200.1	210.1			100	210
	ing Ng 1	<i></i> -	E 70	E 005		530	404	F F0	E 00			E 070	E 070
0	mg kg ⁻¹	5.//	5./6	5.385		5.78	5.43	5.58	5.96			5.072	5.276
Cr	mg kg ⁻¹			0.760		6.96	0.36	1.57	1.68			0.839	0.846
Cs	mg kg ⁻¹	1.24	1.24	0.945		0.85	0.951					0.771	0.838
Cu	mg kg ⁻¹	6.98	6.98	6.001		6.8	6.9	6.51	6.48			6.066	5.461
Dy	mg kg ⁻¹	11.27	11.22	10.961		9.9	10.08	13.47	13.15			9.811	10.82
Er	mg ka-1	5	5.03	4,917		4.53	4,29	4,84	4,71			4,367	4,703
=. E.,	ma ka-1	5 71	5.60	5 714		5.40	5.31	6.51	6.40			5 224	5.632
<u></u>		3.71	20.40	20.070		27.4	26.00	0.01	20.43			0.224	20.40
Ga	mg kg ⁻¹	30.1	30.13	29.070		37.1	36.82	28.07	29.28			28.65	29.49
Gd	mg kg ⁻¹	16.64	16.51	16.505		15.34	14.95	19.97	19.5			14.66	16
Ge	mg kg ⁻¹					8.58	8.6					1.504	1.413
Hf	mg kg ⁻¹	31.12	31.2	30.738		29.38	30.1	36.65	35.92			28.29	31.15
Hg	mg kg ⁻¹												
Но	mg kg ⁻¹	1.97	1.97	1.867		1.8	1.82	1.93	1.87			1.681	1.851
1	ma ka ⁻¹												
1	mg kg					0.152	0.159						
	ilig kg					0.132	0.150						
Ir	mg kg ⁻¹												
La	mg kg ⁻¹	94.88	94.72	95.539		90.9	90	101.1	100.9			87.35	94.23
Li	mg kg ⁻¹	14.59	14.46	13.923		14.16	13.9	13.73	14.43			12.95	13.6
Lu	mg kg ⁻¹	0.57	0.57	0.554		0.528	0.495	0.57	0.58			0.493	0.528
Mn	mg kg ⁻¹	1237.410	1240.250	1234.397		1045	1057	1115	1169			1208	1237
Mo	ma ka-1			13 303		31.7	27.1						-
NIA	ma ka-1	03.65	02.62	00.054		97.7	90	01.5	04.0			94.05	97.52
ND	ilig kg	93.03	95.05	90.034		07.7	09	91.5	94.9			04.03	07.52
Nd	mg kg ⁻¹	108.2	108.120	107.991		100.1	100	103.8	103.2			98.19	105
Ni	mg kg ⁻¹	15.43	15.56	6.781		5.44	6.1	15.1	19.01			4.716	5.049
Pb	mg kg ⁻¹	9.04	9.03	8.088		8.97	8.7	7.8	7.1			9.266	9.509
Pd	mg kg ⁻¹												
Pr	mg kg ⁻¹	26.71	26.69	26.246		25.44	25.48	26.11	25.95			23.95	25.57
Pt	mg kg ⁻¹												
Rb	ma ka-1	102 110	102 040	98.920		100 9	100.8	94 68	99.30			96.51	99.78
Ro	ma ka-1							5	-0.00				
DL	ing Ng												
KN	rng kg"												
S	mg kg ⁻¹												
Sb	mg kg ⁻¹					0.488	0.326	0.39	0.36				
Sc	mg kg ⁻¹	10.09	10.1	8.605		9.84	9.7					14.81	14.35
Se	mg kg ⁻¹												
Sm	mg kg ⁻¹	20.5	20.56	20.441		19.52	18.92	24.25	24.21			18.37	20.22
Sn	ma ka ⁻¹			2 965		6.18	5.83	4.28	4 21				
Sr.	ma ka-1	633 340	620 600	633 305		500	602	661	686			603	642
	ing Ng	500.040 F 04	023.090 F	4 040		100	4.40	001	5.00			4 000	042
la	mg kg ⁻¹	5.01	5	4.013		4.53	4.40	0	5.68			4.288	4.05
ть	mg kg ⁻¹	2.19	2.2	2.109		1.93	2.01	2.21	2.18			1.869	2.046
Те	mg kg ⁻¹												
Th	mg kg ⁻¹	13.63	13.57	13.409		12.7	12.63	15.51	15.19			12.16	13.22
TI	mg kg ⁻¹					0.081	0.091						
Tm	ma ka-1	0.82	0.81	0.788		0.732	0.736	0.79	0.78			0.687	0.764
		5.0	5.02	4 756		/ 36	4.62	3.66	3.8/		<u> </u>	4 0/7	4 280
v	ma lima	41.46	J.JZ	13,002		12.46	12.02	12 50	12.02			12.0=1	12 50
v	mg Kĝ ⁻ '	41.40	41.00	13.993		13.40	13.92	12.52	12.92			13.25	13.38
w	mg kg ⁻¹					1.59	1.66						
Y	mg kg ⁻¹	54.01	54.08	52.231		45.94	45.64	55.32	55.87			46.84	50.88
Yb	mg kg ⁻¹	4.35	4.32	4.119		3.98	4.01	4.14	4.02			3.759	4.13
Zn	mg kg-1	165.190	164.630	156.374		187.2	185	142.9	151.3			188	194
Zr	mg kg ⁻¹	1413.650	1410.360	1368.409		1252	1238	1610	1623			1260	1356

Lab Co	ode	D37A	D37B	D42A	D42B	D43A	D43B	D44A	D44B	D45A	D45B	D47A	D47B
SiO2	g 100g-1	55.56		55.6	55.2			55.459	55.318			55.492	55.445
TiO2	a 100a-1	1.68		1 44	1 48			1 678	1 669			1 552	1.563
AI2O3	g 100g-1	17.7		16.8	16.7			18 777	18 795			17 967	17 956
F-202T	g 100g-1	7.03		6.40	6.52			6.909	6 967			6 953	6 953
Pezosi	g 100g	7.05		0.49	0.02			0.090	0.007			0.000	0.000
MgO	g 100g	2.30		2.2	2.20			2.13	2.144			2.170	2.170
CaO	g 100g-1	3.36		5.51	5.72			3.517	3.487			3.545	3.539
Na2O	g 100g-1	5.08		5.18	5.12			5.126	4.991			5.372	5.37
K2O	g 100g ⁻¹	5.68		4.63	4.72			5.291	5.239			5.468	5.459
P2O5	g 100g ⁻¹	0.85		0.65	0.71			0.788	0.778			0.905	0.897
Ag	mg kg ⁻¹	0.36		0.62	0.64								
As	mg kg ⁻¹	2.26											
Au	mg kg ⁻¹	0.02											
В	mg kg ⁻¹							5.405				8.2	8
Ва	mg kg ⁻¹	973		869	871	983	994	1019.135	1012.934	1026.920	1038.720	1019	1019
Be	mg kg ⁻¹	3.5						3.696				3.7	3.6
Bi	mg kg ⁻¹			0.075	0.09							0.032	0.026
Br	mg kg ⁻¹												
Cd	mg kg ⁻¹												
Ce	mg kg ⁻¹	203.1		167	165	207	209	214.672	207.511	194.290	195.260	212.9	213.7
сі	mg kg ⁻¹												
Co	mg kg ⁻¹	5.2		6.62	6.01	5.05	5.4	5.273	5.241			5.1	5.2
Cr	mg kg-1	0.79		6.94	7.01			0.686	1.202				
Cs	mg ka-1	0.87		1	1.01	0.94	0.94	1,075	1,125			0.79	0.85
Cu	ma ka-1	57		8.08	9 Q	0.04	0.04	4,329	4.529			6.5	62
Dv	ma ka-1	10.22		8 50	9.02	10 0	11 1	11 103	10.668	10.43	10.61	10.5	10.6
Er.	ma ka-1	10.22		3.79	3.62	10.5	4.99	5.007	10.000	10.45	10.01	4.7	10.0
E1	mg kg-1	4.49 5.20		5.70	3.00	4.54	4.00	5.097	4.933	4.0	4.00	4.1 E.4	4.7
Eu	ing kg	0.00		20.0	07.4	5.07	3.73	3.765	3.07	0.00	0.09	3.4	5.5
Ga	mg kg ⁻¹	28.08		28.2	27.4	80.5	79.4	27.549	27.828	20	25.56	40	40.7
Gd	mg kg ⁻¹	15.03				15.9	16.2	16.683	16.076	15.24	15.41	15.4	15.4
Ge	mg kg-1	2.5						1.522	1.581	1.31	1.21		
Hf	mg kg ⁻¹	29.65		26.2	25.7	31.6	31.6	31.639	30.583	26.43	27.01	29.8	29.9
Hg	mg kg ⁻¹												
Но	mg kg ⁻¹	1.81		1.54	1.56	1.97	1.99	1.899	1.838	1.77	1.8	1.82	1.82
I	mg kg ⁻¹							0.098	0.096				
In	mg kg ⁻¹	0.13								0.11	0.11		
lr	mg kg ⁻¹												
La	mg kg ⁻¹	89.04		76	75.8	96.1	97	97.461	94.503	87.03	84.49	93.1	93.3
Li	mg kg ⁻¹					13.5	14	13.793	13.73			13.3	13.7
Lu	mg kg ⁻¹	0.53		0.44	0.45	0.62	0.62	0.555	0.532	0.55	0.56	0.54	0.54
Mn	mg kg ⁻¹	1229		1085	1085	1152	1135	1274	1266			1145	1158
Мо	mg kg ⁻¹	11.75				8.84	9.59	7.381	7.187	7.53	15.56		
Nb	mg kg ⁻¹	84.54		69.8	69.4	83	83.3	87.306	86.561	76.7	75.66	87	87.2
Nd	mg kg ⁻¹	96.99		87.5	86.7	104	105	107.921	104.420	88.3	89.18	100.9	100.8
Ni	mg kg ⁻¹	6.15		11.5	10.7			5.918	5.58			4.5	5.4
Pb	mg kg ⁻¹	7.96		4.75	5.42	7.68	7.24	5.558	5.945			8.9	8.5
Pd	ma ka-1												
Pr	ma ka-1	24 22		20.2	20.2	26.5	26.8	26 117	25,363	21 47	21.64	24.5	24.5
Pt	ma ka-1			20.2	20.2	20.0	20.0	20.111	20.000	2	2	2.1.0	21.0
Ph	ma ka-1	98.01		93.4	92.2	95	93.6	96.11	97 893			97.4	97.3
Ro	ma ka-1	0.002		56.4	02.2	00	00.0	00.11	07.000			01.4	01.0
Ph	ma ka-1	0.002											
9	ma ka-1												
S Ch	mg kg-1	0.21		0.42	0.51			0.252	0.4				
30 0-	mg kg	0.31		0.42	0.51	0.05	0.05	0.352	0.4			0.7	0.0
80	mg Kg ⁻¹	13.17		10	0.01	9.95	9.85	9.408	9.21			0./	0.9
Se	mg kg ⁻ '	2.84						00.170	10.011	17.04	40.00	10.0	10.0
Sm	mg kg ⁻¹	19.25		15.7	15.7	20.2	20	20.479	19.911	17.01	18.02	19.2	19.3
Sn	mg kg ⁻¹	3.81		3.06	3.75	2.93	2.77	2.467	2.448				
Sr	mg kg ⁻¹	631.7		545	540	612	613	629.736	626.086			583.1	576.9
Та	mg kg ⁻¹	4.46		3.76	3.65	4.6	4.58	4.492	4.441	5.03	5.12	4.4	4.4
ТЬ	mg kg-1	1.98		1.65	1.71	2.17	2.16	2.095	2.016	1.99	2.03	2.1	2.11
Те	mg kg-1												
Th	mg kg-1	12.81		10.1	10.5	13.9	14.1	13.548	13.041			12.4	12.4
ТІ	mg kg-1	0.049		0.12	0.14								
Tm	mg kg-1	0.758		0.63	0.73	0.85	0.88	0.789	0.762	0.76	0.77	0.76	0.77
U	mg kg-1	4.25		3.48	3.39	4.84	4.62	4.546	4.724			4.1	4.3
v	mg kg-1	13.16		17.3	17.1	13.4	13.1	14.194	14.503			13.5	13.8
w	mg kg-1	1.45		1.41	1.43	1.63	1.59	1.499	1.582	1.22	1.27		
Y	mg kg-1	48.23		41.4	41.3	50.9	51.2	52.841	51.341	45.44	45.97	51	51.1
Yb	mg kg-1	3.98		3.11	3.22	4.32	4.17	4.168	4.054	4.02	4.07	4.01	4.01
Zn	mg kg-1	150.9		146	145			170.140	172.533			158.2	154.5
Zr	mg kg-1	1315		1110	1100	1299	1307	1395.526	1374.648	1267.180	1293.400	1285	1268

		DARA	D.40D	D 40.4	D.40D	DEAA	DEAD	DEAA	DC4D	DEAA	DCOD		
Lab Co	ode	D48A	D48B	D49A	D49B	D50A	D50B	D51A	D51B	D53A	D53B	-	-
SiO2	g 100g-1	55.536		58	57.62	56.67	56.07			55.56	55.61		
TiO2	g 100g-1	1.592		1.57	1.57	1.555	1.571			1.67	1.67		
AI2O3	g 100g-1	17.828		18.24	18.35	17.49	17.48			18.73	18.76		
Fe2O3T	g 100g-1	7.124		7.31	7.3	7.025	7.025			7.03	7.02		
MaO	a 100a-1	2.23		2 25	2.25	2 182	2 208			2 32	2 32		
ingo G-O	a 400-r1	2.625		2.20	2.20	2.102	2.200			2.62	2.62		
CaU	g 100g -	3.035		3.74	3.03	5.04	5.04			3.03	3.00		
Na2O	g 100g ⁻¹	4.8		5.27	5.3	5.588	5.598			4.59	4.62		
K2O	g 100g-1	5.281		5.41	5.5	5.562	5.482			5.4	5.39		
P2O5	g 100g-1	0.933		0.81	0.88	0.830	0.865			0.94	0.91		
Ag	mg kg-1			0.11	0.13			0.166	0.153				
As	mg kg-1			1	1.98	1,102	2.076	2.43	2.32				
Διι	ma ka-1			0.01	0.02	-		0.03	0.028				
R	ang lagit			12.02	10.02	7 47	6 972	6.00	7.06				
в	mg kg ·			13.03	12.70	1.41	0.073	0.19	7.00	1071.010	1007.010		
Ва	mg kg-1			1053.120	1068.480	1048	1056	966	978	1071.610	1067.340		
Be	mg kg-1			4.24	4.24	3.683	3.788	3.03	3.29				
Bi	mg kg ⁻¹			0.02	0.04			0.028	0.035				
Br	mg kg-1												
Cd	mg kg-1			0.24	0.3			0.12	0.115				
Co.	ma ka-1			214.040	216 200	207.8	208.3	195	196	216 650	213 550		
00	ing kg			214.040	210.230	207.0	200.5	135	130	210.000	210.000		
CI	mg kg ·												
C0	mg kg ⁻¹			5.31	5.44	5.273	5.324	5.26	5.19	5.82	5.8		
Cr	mg kg-1					1.386	1.553	1.17	1.16	0.95	0.86		
Cs	mg kg-1			1.09	0.96	0.965	0.821	0.816	0.868	0.94	1.05		
Cu	mg kg-1			6.12	6.13	6.148	5.607	5.44	5.41	5.92	5.93		
Dv	mg kg-1	t i		11.26	11.43	10.13	9,996	9,93	9,96	10,75	10,78		
Fr	ma ka-1			4 02	4.84	4 / 07	4/3	4.46	<u>4</u> /1	4 78	4 72		
	ma lunal	ł		T.32	F 77	T.+31	+ J E / 7 F	F.40	5.00	T.10	T.12		
Eu	mg kg⁻'			5.72	5.77	5.502	5.475	5.24	5.29	5.67	5.65		
Ga	mg kg ⁻¹			28.27	28.39	31.68	31.06	28.5	28.4				
Gd	mg kg ⁻¹			16.81	17.13	15.16	15.02	14.3	14.5	15.58	15.52		
Ge	mg kg-1			1.3	1.44			2.14	2.21				
Hf	mg kg-1			31.6	32.07	30.91	30.31	28.9	29.8	31.26	31.12		
На	ma ka-1			0.59	0.72						-		
Lig Lie	ma ka-1			1.00	1.04	1 70	1 761			1 0 0	1 90		
H0	ilig kg			1.00	1.94	1.79	1.701			1.00	1.09		
1	mg kg-1												
In	mg kg-1			0.11	0.11			0.131	0.124				
Ir	mg kg-1							0.004	0.003				
La	mg kg-1			97.79	99.61	93.17	93.06	88.8	89.9	96.92	96.34		
Li	mg kg-1			14.34	14.53	13.43	13.45	13.4	13.7	15.12	15.04		
 L.,	ma ka-1			0.54	0.56	0.549	0.542	0.523	0.520	0.55	0.55		
Lu Ma	nig kg	4455 400		0.04	1000 700	0.040	0.342	0.323	0.329	0.55	0.55		
lvin 	mg kg ·	1155.400		1281.880	1282.790	1238	1252	1279	1282	1310.420	1321.340		
Мо	mg kg-1			9.64	8.68	10.32	8.236	10.7	9.4	8.31	9.58		
Nb	mg kg-1			85.98	86.87	94.41	94.24	83.4	83.4	93.5	92.6		
Nd	mg kg-1			113.2	113.750	101.4	101.8	96	98	107.590	107.170		
Ni	mg kg-1			5.17	5.38	5.66	6.131	7.2	5.63	5.59	5.89		
Pb	mg kg-1			7.11	8.79	7.182	7.904	8.97	8.43	9.67	8.49		
Pd	ma ka-1			0.21	0.25			0.131	0.113				
Da	ing kg			0.21	0.25	05.40	05.04	0.131	0.113	20.55	00.40		
Pr	mg kg ·			20.03	20.88	25.42	25.34	24.1	24.2	20.55	20.42		
۲t	mg kg ⁻¹	 		4.08	2.58			1.94	2.15				
Rb	mg kg ⁻¹			99.74	100.170	103.9	104.7	101	99.8	115.080	113.740		
Re	mg kg ⁻¹												
Rh	mg kg ⁻¹							0.46	0.355				
s	mg kg ⁻¹			640.2	595.850								
Sb	ma ka-1			0.4	0.4			0.34	0.328				
80	ma ka-1			11 61	11 72	10.41	10.17	87	80	0.25	0 17		
00	ing Ng			11.01	11.73	10.41	10.17	0.7	0.9	9.20	5.17		
50	rng kg-1	ļ	L					1.99	1.89			L	ļ
Sm	mg kg-1			20.87	21.27	19.27	19.23	18.6	19.1	20.33	20.34		
Sn	mg kg ⁻¹			2.55	3.04			3.86	3.73	4.23	3.98		
Sr	mg kg ⁻¹			640.470	649.690	618.3	624.2	647	652	655.350	650.820		
Та	mg kg ⁻¹			4.31	4.39	4.787	4.787	4.31	4.35	4.77	4.75		
ть	mg ka-1			2.09	2.15	2.007	1.973	1.94	1.94	2.12	2.09		
То	ma ka-1			2.00	2.10	2.001				2.12	2.00		
Th	ing Ng			40.54	40.70	40.70	40.00	10.5	40.0	10.11	42.4		
110	mg kg ⁻ '	ļ		13.51	13.78	12./3	12.68	12.5	12.6	13.44	13.4		
ті	mg kg ⁻¹			0.04	0.05			0.082	0.058				
Tm	mg kg ⁻¹			0.79	0.8	0.637	0.621	0.727	0.733	0.78	0.77		
U	mg kg ⁻¹			4.94	4.47	5.093	4.63	4.14	4.22	4.6	4.71		
v	mg ka-1			14.35	14.2	13.62	13.12	13.2	13.1	14.43	14.54		
w	ma ka-1			1 40	1.51	1 590	1.46	1 / 2	1.42	1.55	1.61		
			-	1.40 E0.04	1.01	1.009 EE 47	1.40 E4.00	1.43	1.42	1.00	1.01 F0.0		
T	mg kg ⁻ '			52.01	52.//	55.47	54.66	47.3	48.1	50.79	50.6		
Yb	mg kg ⁻¹	ļ		4.17	4.35	3.838	3.772	3.86	4	4.17	4.16		
Zn	mg kg ⁻¹			179.650	187.120	153.8	156.9	195	190	210.580	205.350		
Zr	mg kg ⁻¹			1451.090	1479.080	1417	1404	1243	1266	1370.200	1356.380		

Table 2 - G-Probe 25a Designated values and statistical summary for Phonolite, KPI	no-2G Glass.

					-						
	Designated Value	Uncertainty of designated value	Horwitz Quality	Horwitz Target Precision	Uncertainty/ Target Precision	Number of reported results	Robust Mean of results	Robust SD of results	Median of results	Status of designated value	Type of designated value
	X _{pt}	u(<i>x_{pt}</i>)	k x 0.01	σ _{pt}	u(x _{pt})/or _{pt}	п					
	g 100g-1	g 100g-1		g 100g ⁻¹			g 100g-1	g 100g ⁻¹	g 100g-1		
SiO2	55.64	0.1142	1	0.6078	0.1878	28	55.79	0.571	55.64	Assigned	Median
TiO2	1.57	0.007591	1	0.02934	0.2587	29	1.571	0.06276	1.57	Assigned	Median
AI2O3	17.65	0.08971	1	0.2292	0.3915	29	17.63	0.4611	17.65	Assigned	Median
Fe2O3T	6.942	0.03554	1	0.1037	0.3426	29	6.905	0.2179	6.942	Assigned	Median
MgO	2.199	0.01043	1	0.03906	0.267	28	2.199	0.05519	2.195	Assigned	Robust Mean
CaO	3.565	0.01948	1	0.05889	0.3309	28	3.565	0.1031	3.563	Assigned	Robust Mean
Na2O	5.325	0.0674	1	0.0828	0.814	28	5.211	0.2593	5.277	Provisional	Mode
K2O	5.376	0.02841	1	0.08348	0.3404	28	5.376	0.1503	5.386	Assigned	Robust Mean
P2O5	0.911	0.0214	1	0.01848	1.158	28	0.8885	0.06327	0.9005	Provisional	Mode
	mg kg-1	mg kg-1		mg kg ⁻¹			mg kg-1	mg kg-1	mg kg-1		
Ва	1005	9.03	1	28.39	0.318	27	1005	46.92	1004	Assigned	Robust Mean
Be	3.775	0.06649	1	0.2472	0.2689	16	3.795	0.2744	3.775	Assigned	Median
Bi	0.03075	0.001807	1	0.004154	0.435	8	0.03302	0.005449	0.03075	Provisional	Median
Ce	207.9	2.166	1	7.449	0.2907	26	204.6	11.02	207.9	Assigned	Median
Co	5.225	0.0375	1	0.3258	0.1151	24	5.349	0.3257	5.278	Assigned	Mode
Cs	0.895	0.02518	1	0.07279	0.346	23	0.9042	0.0971	0.895	Assigned	Median
Cu	5.878	0.115	1	0.3601	0.3193	20	6.112	0.7956	5.963	Assigned	Mode
Dy	10.46	0.1499	1	0.5878	0.255	26	10.47	0.587	10.46	Assigned	Median
Er	4.64	0.05276	1	0.2946	0.1791	26	4.64	0.269	4.665	Assigned	Robust Mean
Eu	5.583	0.03849	1	0.3447	0.1116	24	5.583	0.1885	5.643	Assigned	Robust Mean
Ga	28.82	0.639	1	1.39	0.4598	22	30.18	3.312	29.41	Assigned	Mode
Gd	15.32	0.27	1	0.8128	0.3322	25	15.58	1.006	15.4	Assigned	Mode
Hf	29.89	0.4051	1	1.434	0.2825	25	30.13	1.347	29.89	Assigned	Median
Но	1.81	0.01635	1	0.1324	0.1235	25	1.817	0.07643	1.81	Assigned	Median
In	0.12	0.006194	1	0.01321	0.469	9	0.1215	0.01087	0.12	Provisional	Median
La	93.08	1.16	1	3.763	0.3083	26	92.11	4.787	93.08	Assigned	Median
Li	13.91	0.1399	1	0.7487	0.1868	21	13.91	0.6409	13.87	Assigned	Robust Mean
Lu	0.54	0.005867	1	0.04739	0.1238	26	0.5359	0.02741	0.54	Assigned	Median
Mn	1225	21	1	33.59	0.6252	29	1201	65	1211	Assigned	Mode
Мо	9.02	0.292	1	0.5181	0.5636	17	10.46	2.586	9.278	Provisional	Mode
Nb	86.72	1.82	1	3.543	0.5136	26	87.45	7.592	87.02	Assigned	Mode
Nd	101.6	1.2	1	4.055	0.2959	26	101.6	6.119	101.6	Assigned	Robust Mean
Ni	5.77	0.189	1	0.3545	0.5331	24	7.098	2.915	5.94	Provisional	Mode
Pb	8.425	0.448	1	0.4889	0.9163	25	8.235	0.8949	8.22	Provisional	Mode
Pr	25.39	0.4136	1	1.248	0.3314	26	25.1	1.562	25.39	Assigned	Median
Rb	98.86	0.8372	1	3.961	0.2114	26	98.65	4.149	98.86	Assigned	Median
Sb	0.3736	0.008392	1	0.03465	0.2422	12	0.3736	0.02907	0.375	Provisional	Robust Mean
Sm	19.58	0.2116	1	1.001	0.2114	26	19.58	1.079	19.5	Assigned	Robust Mean
Sr	621.9	4.629	1	18.89	0.245	26	621.1	26.44	621.9	Assigned	Median
Та	4.59	0.08919	1	0.2919	0.3056	25	4.684	0.4314	4.59	Assigned	Median
Tb	2.04	0.02577	1	0.1466	0.1758	25	2.032	0.1093	2.04	Assigned	Median
Th	13.01	0.135	1	0.7072	0.1908	25	13.01	0.6748	13.04	Assigned	Robust Mean
Tm	0.77	0.0075	1	0.06406	0.1171	26	0.7569	0.04144	0.765	Assigned	Mode
U	4.49	0.08919	1	0.2865	0.3113	25	4.462	0.316	4.49	Assigned	Median
v	13.41	0.1059	1	0.7259	0.1459	25	13.6	0.6868	13.41	Assigned	Median
W	1.498	0.02083	1	0.1127	0.1848	1/	1.498	0.0859	1.5	Assigned	Robust Mean
Y Na	49.62	0.6568	1	2.205	0.2978	26	49.62	3.349	49.56	Assigned	Robust Mean
Yb _	4.015	0.03544	1	0.2605	0.1361	26	4.015	0.1807	4.019	Assigned	Robust Mean
Zr	1331	19.43	1	36.05	0.5389	27	1323	82.9	1331	Assigned	Median

Table 3 - G-Probe 25a Z-scores for Phono	lite, KPho-2G Glass. 15/09/2021
--	---------------------------------

Lab Code	D2	D3	D4	D6	D7	D8	D10	D11	D12	D13	D14	D16	D17
SiO2: 1	0.53	2.24	*	-0.07	-44.22	-0.39	-0.58	-0.77	*	*	0.53	4.51	-0.12
TiO2: 1	0.68	0.00	*	0.34	-25.96	-0.43	0.34	3.58	-9.54	*	0.34	1.87	-0.85
AI2O3: 1	-0.63	-1.57	*	1.48	-38.03	0.30	-0.31	-1.33	-10.25	*	0.00	-2.75	-1.17
Fe2O3T: 1	0.99	-0.20	*	0.70	-32.70	0.00	10.01	-7.15	-10.34	*	1.19	-1.13	-0.75
MgO: 1	-1.25	-0.43	*	1.44	-8.55	0.73	-1.51	-0.10	-13.80	*	0.80	-0.99	0.26
CaO: 1	-0.68	-2.76	*	1.27	404.09	0.18	-1.10	-2.21	-7.39	2.29	-1.36	-1.10	0.30
Na2O: 1	0.54	0.18	*	1.87	-34.60	-0.61	1.15	0.00	-11.29	*	-2.48	-6.10	-0.70
K20: 1	-1.57	-0.26	*	-0.79	-31.68	0.02	2.80	1.66	-1.63	*	-1.21	0.88	-1.83
P2O5: 1	1.84	3.08	*	-1.14	-24.44	0.78	*	-6.01	-11.74	*	-1.95	-0.60	0.00
Ba: 1	-1.34	0.68	-1.04	*	*	*	-0.45	*	-3.51	-3.41	-0.87	*	3.13
Be: 1	-0.24	0.56	-0.22	*	*	*	*	*	0.22	*	*	*	*
Bi: 1	-0.90	*	-0.18	*	*	*	*	*	*	*	*	*	*
Ce: 1	-0.88	0.59	-3.49	*	*	*	-1.47	*	-3.08	-3.45	*	*	1.41
Co: 1	0.38	-0.09	0.98	*	*	*	0.26	*	-1.43	-1.30	*	*	-0.81
Cs: 1	0.00	0.55	-0.89	*	*	*	-0.87	*	-2.17	0.17	*	*	-1.58
Cu: 1	-0.98	0.74	0.13	*	*	*	-0.94	*	-3.33	*	*	*	*
Dy: 1	-0.21	1.04	-0.18	*	*	*	-1.10	*	-1.35	-1.52	*	*	0.42
Er: 1	0.17	1.01	-0.24	*	*	*	-1.53	*	-1.15	-1.33	*	*	0.51
Eu: 1	0.22	0.41	-0.12	*	*	*	-0.36	*	*	-1.70	*	*	1.04
Ga: 1	4.31	0.85	*	*	*	*	1.21	*	-3.82	*	*	*	*
Gd: 1	8.94	1.25	-0.52	*	*	*	-1.01	*	-1.63	-2.12	*	*	0.61
Hf: 1	-0.15	1.17	0.09	*	*	*	-0.76	*	-0.76	-1.24	*	*	1.31
Ho: 1	-0.26	0.60	-0.19	*	*	*	-0.68	*	-1.13	-0.93	*	*	0.30
In: 1	-0.38	*	0.76	*	*	*	*	*	-0.53	*	*	*	*
La: 1	-1.53	0.31	-0.74	*	*	*	-0.29	*	-2.28	-2.23	*	*	0.96
Li: 1	1.45	-0.06	1.08	*	*	*	0.92	*	-0.55	-1.57	*	*	*
Lu: 1	0.00	0.36	-0.42	*	*	*	-0.91	*	-0.84	-0.98	*	*	0.42
Mn: 1	-0.84	0.00	0.55	-0.42	-16.98	0.31	-1.56	*	-6.45	-1.23	1.10	*	-0.82
Mo: 1	2.01	-0.47	55.74	*	*	*	0.00	*	15.21	*	*	*	*
Nb: 1	2.15	1.01	6.29	*	*	*	-2.35	*	-3.14	-2.27	*	*	2.94
Nd: 1	-0.74	1.49	-0.92	*	*	*	-1.05	*	-2.11	-2.10	*	*	1.60
Ni: 1	0.39	-3.99	1.92	*	279.91	*	0.56	*	6.29	*	*	*	-6.38
Pb: 1	0.00	-0.47	1.81	*	*	*	1.44	*	-3.59	-2.38	*	*	1.67
Pr: 1	-1.00	0.62	-0.49	*	*	*	-1.67	*	-1.99	-1.87	*	*	1.27
Rb: 1	0.66	0.09	-0.68	*	*	*	1.30	*	-3.20	-1.37	-3.75	*	-0.02
Sb: 1	0.04	*	-0.54	*	*	*	*	*	-0.42	*	*	*	*
Sm: 1	-0.70	1.03	0.11	*	*	*	-0.68	*	-1.47	-1.57	*	*	1.24
Sr: 1	-1.73	0.48	-0.74	*	*	*	-0.42	*	-3.28	-1.41	2.60	*	1.31
Ta: 1	1.03	1.21	2.43	*	*	*	-0.48	*	-1.68	-1.50	*	*	2.43
Tb: 1	-0.17	0.57	0.41	*	*	*	-0.89	*	-1.43	-1.18	*	*	0.20
Th: 1	0.08	0.83	0.04	*	*	*	-0.72	*	-0.86	-1.50	*	*	1.16
Tm: 1	-0.16	0.54	0.08	*	*	*	-1.12	*	-1.01	-1.12	*	*	0.16
U: 1	0.58	0.51	0.02	*	*	*	-0.45	*	-0.91	-1.49	*	*	0.03
V: 1	0.43	0.51	-0.21	*	*	*	-0.16	*	-2.64	-1.05	*	*	-0.27
W: 1	-0.43	0.84	-0.29	*	*	*	-0.34	*	-0.96	*	*	*	*
Y: 1	0.65	1.23	-0.69	*	*	*	-1.55	*	-1.96	-1.73	*	*	-0.12
Yb: 1	-0.34	0.83	-0.02	*	*	*	-1.05	*	-1.28	-0.98	*	*	0.52
Zr: 1	0.30	1.88	1.00	*	*	*	-1.55	*	-3.65	-3.38	-3.54	*	1.52

Table 5 - G-Frobe 25a Z-Scores for Frioholite, KFrio-2G Glass. 15/05/20	Table 3 -	- G-Probe	25a Z-scores	for Phonolite,	KPho-2G Glass.	15/09/202
---	-----------	-----------	--------------	----------------	----------------	-----------

Lab Code	D18	D19	D20	D21	D22	D24	D27	D28	D32	D33	D34	D37	D42
SiO2: 1	0.07	0.40	-1.96	4.80	0.54	-0.12	0.07	0.78	*	1.44	0.75	-0.13	-0.39
TiO2: 1	-1.87	-1.02	-2.73	3.58	-0.34	0.17	-0.21	-0.51	*	-1.36	0.07	3.75	-3.75
AI2O3: 1	-0.76	0.94	-2.40	5.76	-0.48	1.13	-0.19	0.04	*	0.70	1.00	0.22	-3.93
Fe2O3T: 1	-3.06	-2.04	-2.67	-0.75	0.03	0.13	1.98	0.56	*	-0.84	1.15	0.85	-4.21
MgO: 1	-0.35	1.18	-2.27	*	-0.35	-0.87	0.51	0.54	*	2.46	-0.53	3.87	0.80
CaO: 1	0.85	-1.02	*	*	-0.43	-0.17	0.10	0.51	*	1.02	0.73	-3.48	34.81
Na2O: 1	-2.17	0.85	-2.05	*	0.72	2.90	-0.35	-0.54	*	-3.80	1.38	-2.96	-2.11
K2O: 1	-1.75	4.24	-1.87	*	0.65	1.48	-0.42	0.71	*	1.30	0.44	3.64	-8.40
P2O5: 1	-0.05	1.03	-2.22	15.80	1.84	-0.87	-0.16	-2.98	*	2.65	1.03	-3.30	-12.50
Ba: 1	-0.69	3.13	0.52	-1.67	*	0.50	0.86	-0.04	1.26	*	-0.22	-1.12	-4.74
Be: 1	-5.02	*	0.16	*	*	0.87	0.59	2.45	1.13	*	*	-1.11	*
Bi: 1	1.75	*	*	*	*	*	*	1.63	*	*	*	*	12.46
Ce: 1	0.05	3.31	0.14	-1.59	*	0.40	0.67	-0.60	-0.01	*	-0.46	-0.65	-5.63
Co: 1	-0.05	3.18	-0.15	*	*	1.66	0.49	1.17	1.67	*	-0.16	-0.08	3.35
Cs: 1	-0.34	1.69	-0.89	*	*	4.74	0.69	0.08	*	*	-1.24	-0.34	1.51
Cu: 1	3.56	*	10.61	*	*	3.06	0.34	2.70	1.71	*	-0.32	-0.49	8.64
Dy: 1	0.55	-0.10	0.32	-0.48	*	1.33	0.84	-0.81	4.84	*	-0.25	-0.42	-2.82
Er: 1	0.63	-0.24	0.37	-0.33	*	1.27	0.94	-0.78	0.46	*	-0.36	-0.51	-3.09
Eu: 1	0.12	0.29	0.24	-0.71	*	0.34	0.38	-0.53	2.66	*	-0.45	-0.59	*
Ga: 1	-0.37	3.57	0.67	2.14	*	0.93	0.18	5.86	-0.10	*	0.18	-0.53	-0.73
Gd: 1	1.24	0.17	-0.03	-0.74	*	1.54	1.45	-0.22	5.43	*	0.01	-0.36	*
Hf: 1	*	-0.24	0.25	0.00	*	0.89	0.59	-0.10	4.46	*	-0.12	-0.17	-2.75
Ho: 1	0.15	-0.18	0.08	-0.08	*	1.21	0.43	0.00	0.68	*	-0.33	0.00	-1.96
ln: 1	*	*	0.00	*	*	*	*	2.65	*	*	*	0.76	*
La: 1	0.42	0.26	-0.01	-1.20	*	0.46	0.65	-0.70	2.10	*	-0.61	-1.07	-4.57
Li: 1	-0.88	0.20	-0.95	*	*	0.82	0.01	0.16	0.22	*	-0.85	*	*
Lu: 1	0.21	-0.49	0.00	-0.32	*	0.63	0.30	-0.60	0.74	*	-0.62	-0.21	-2.00
Mn: 1	-1.87	*	-1.12	0.94	*	0.43	0.29	-5.17	-2.46	*	-0.06	0.13	-4.15
Mo: 1	-1.60	*	-1.49	*	*	*	8.27	39.33	*	*	*	5.27	*
Nb: 1	-0.23	5.47	0.18	-0.33	*	1.95	0.94	0.46	1.83	*	-0.26	-0.62	-4.83
Nd: 1	1.09	0.74	0.84	-0.55	*	1.61	1.57	-0.39	0.46	*	-0.01	-1.15	-3.59
Ni: 1	-1.52	14.44	-0.94	18.08	*	27.43	2.85	0.00	31.83	*	-2.50	1.07	15.04
Pb: 1	-0.42	-1.17	1.33	-0.24	*	1.25	-0.69	0.84	-1.99	*	1.97	-0.95	-6.83
Pr: 1	0.01	1.53	0.17	-0.88	*	1.05	0.69	0.06	0.51	*	-0.50	-0.94	-4.16
Rb: 1	-0.66	3.61	0.24	0.31	*	0.81	0.02	0.50	-0.46	*	-0.18	-0.21	-1.53
Sb: 1	0.33	*	-0.10	*	*	*	*	0.96	0.04	*	*	-1.84	2.64
Sm: 1	0.66	0.62	0.22	-0.66	*	0.95	0.86	-0.36	4.65	*	-0.29	-0.33	-3.88
Sr: 1	-0.39	-0.48	0.46	-0.54	*	0.51	0.61	-1.13	2.73	*	0.03	0.52	-4.20
Ta: 1	*	2.57	0.46	-0.16	*	1.42	0.76	-0.33	4.63	*	-0.41	-0.45	-3.03
Tb: 1	*	0.07	0.00	-0.41		1.06	0.47	-0.48	1.06	*	-0.56	-0.41	-2.46
Th: 1	-1.07	0.75	0.27	-0.55	*	0.83	0.56	-0.49	3.31	*	-0.45	-0.28	-3.83
Tm: 1	0.00	-0.32	0.08	-0.42	*	0.70	0.28	-0.56	0.23	*	-0.69	-0.19	-1.40
U: 1	-0.33	3.06	-0.47	-0.37	*	4.96	0.93	0.00	-2.58	*	-1.12	-0.84	-3.68
V: 1	0.39	3.13	-0.23	-0.24	*	38.70	0.80	0.38	-0.96	*	0.00	-0.35	5.21
W: 1	*	*	0.06	0.55	*	*	*	1.13	×	• •	*	-0.43	-0.69
Y: 1	1.12	-0.00	-0.05	-1.17	*	2.01	1.18	-1.74	2.71	*	-0.34	-0.63	-3.75
Yb: 1	0.23	0.05	0.14	-0.26	*	1.23	0.40	-0.08	0.25		-0.27	-0.13	-3.26
Zr: 1	1.03	0.00	0.01	-0.63	*	2.25	1.04	-2.38	7.93	*	-0.63	-0.44	-6.26

Table 3 - G-Probe 25a Z-scores for Phonolite, KP	Pho-2G Glass.	15/09/2021
--	---------------	------------

Lab Code	D43	D44	D45	D47	D48	D49	D50	D51	D53	
SiO2: 1	*	-0.41	*	-0.28	-0.17	3.57	1.20	*	-0.09	
TiO2: 1	*	3.53	*	-0.43	0.75	0.00	-0.24	*	3.41	
AI2O3: 1	*	4.96	*	1.36	0.78	2.81	-0.72	*	4.78	
Fe2O3T: 1	*	-0.57	*	-0.86	1.75	3.50	0.80	*	0.80	
MgO: 1	*	-1.33	*	-0.56	0.80	1.31	-0.10	*	3.10	
CaO: 1	*	-1.07	*	-0.39	1.19	3.73	-0.43	*	1.53	
Na2O: 1	*	-3.22	*	0.56	-6.34	-0.48	3.24	*	-8.70	
K20: 1	*	-1.33	*	1.05	-1.14	0.94	1.75	*	0.23	
P2O5: 1	*	-6.93	*	-0.54	1.19	-3.57	-3.45	*	0.76	
Ba: 1	-0.57	0.40	0.99	0.50	*	1.98	1.67	-1.15	2.28	
Be: 1	*	-0.32	*	-0.51	*	1.88	-0.16	-2.49	*	
Bi: 1	*	*	*	-0.42	*	-0.18	*	0.18	*	
Ce: 1	0.01	0.42	-1.77	0.72	*	0.97	0.01	-1.67	0.96	
Co: 1	0.00	0.10	*	-0.23	*	0.46	0.23	0.00	1.80	
Cs: 1	0.62	2.82	*	-1.03	*	1.79	-0.03	-0.73	1.37	
Cu: 1	*	-4.02	*	1.31	*	0.69	-0.00	-1.26	0.13	
Dy: 1	0.91	0.72	0.10	0.15	*	1.50	-0.68	-0.88	0.51	
Er: 1	0.92	1.31	-0.00	0.20	*	0.81	-0.60	-0.70	0.37	
Eu: 1	0.34	0.42	-0.04	-0.39	*	0.47	-0.27	-0.92	0.22	
Ga: 1	36.79	-0.81	-2.18	8.30	*	-0.35	1.84	-0.26	*	
Gd: 1	0.89	1.30	0.00	0.09	*	2.02	-0.29	-1.14	0.28	
Hf: 1	1.19	0.85	-2.21	-0.03	*	1.36	0.50	-0.38	0.91	
Ho: 1	1.28	0.44	-0.19	0.08	*	0.76	-0.26	*	0.57	
In: 1	*	*	-0.76	*	*	-0.76	*	0.57	*	
La: 1	0.92	0.77	-1.95	0.03	*	1.49	0.01	-0.99	0.94	
Li: 1	-0.22	-0.20	*	-0.55	*	0.70	-0.63	-0.48	1.56	
Lu: 1	1.69	0.07	0.32	0.00	*	0.21	0.10	-0.30	0.21	
Mn: 1	-2.41	1.35	*	-2.17	-2.06	1.72	0.61	1.67	2.72	
Mo: 1	0.38	-3.35	4.87	*	*	0.27	0.50	1.99	-0.14	
Nb: 1	-1.01	0.06	-2.97	0.11	*	-0.08	2.15	-0.94	1.79	
Nd: 1	0.70	1.12	-3.18	-0.20	*	2.92	-0.01	-1.14	1.42	
Ni: 1	*	-0.06	*	-2.31	*	-1.40	0.35	1.82	-0.08	
Pb: 1	-1.97	-5.47	*	0.56	*	-0.97	-1.80	0.56	1.34	
Pr: 1	1.01	0.28	-3.07	-0.71	*	1.09	-0.01	-0.99	0.88	
Rb: 1	-1.15	-0.47	*	-0.38	*	0.28	1.37	0.39	3.93	
Sb: 1	*	0.07	*	*	*	0.76	*	-1.14	*	
Sm: 1	0.52	0.61	-2.06	-0.33	*	1.49	-0.33	-0.73	0.75	
Sr: 1	-0.50	0.32	*	-2.22	*	1.23	-0.03	1.46	1.65	
Ta: 1	0.00	-0.42	1.66	-0.65	*	-0.82	0.67	-0.89	0.58	
Tb: 1	0.85	0.11	-0.20	0.44	*	0.55	-0.34	-0.68	0.44	
Th: 1	1.40	0.40	*	-0.86	*	0.90	-0.43	-0.65	0.58	
Tm: 1	1.48	0.09	-0.08	-0.08	*	0.39	-2.20	-0.62	0.08	
U: 1	0.84	0.51	*	-1.01	*	0.75	1.30	-1.08	0.58	
V: 1	-0.23	1.29	*	0.32	*	1.18	-0.06	-0.37	1.47	
W: 1	0.99	0.38	-2.24	*	*	0.02	0.23	-0.65	0.73	
Y: 1	0.65	1.12	-1.78	0.65	*	1.26	2.47	-0.87	0.49	
Yb: 1	0.88	0.37	0.12	-0.02	*	0.94	-0.80	-0.33	0.58	
Zr: 1	-0.77	1.51	-1.40	-1.50	*	3.73	2.21	-2.12	0.90	

6.1

5.9

5.7

5.5

5.3

5.

4.9

4.7

1.08

1.01

0.96

0.91

0.86

0.81

0.76 0.7

6.0

5.

3.3

1.6

D18 D51 D37

Concentration Be mg kg⁻¹

Concentration P2O5 g 100g⁻¹

D7 D12

D53 D48 D16

Provisional

Concentration Na2O g 100g⁻¹

Provisional

🔻 u-XRF

LIBS

X Other

🚖 SEM

LA-ICP-MS 🔵 EPMA

Figure 1: G-Probe 25a - Phonolite, KPho-2G Glass. Data distribution charts for elements for which values were assigned or provisional values given for guidance. Horizontal lines show the limits for -2<z<2 where the z-score is derived according to the Quality specified.

Figure 2: G-Probe 25a - Phonolite, KPho-2G Glass. Data distribution charts provided for information only for elements for which values could not be credited with assigned or provisional status.

4

042

34

D42

028

SiO2	•			•	•	•	•	•			•		•	•	•	•		•	•	•	•		•	•	•	•		•		•
TiO2	•	•		•	•	٠	•		•		•	•	•	٠	•	•		•	٠	•	•		•	•		•				•
AI2O3	•	•		•	•	٠	•	•	•		•	•	•	٠	•	•		•	٠	•	•		•	•	٠	•				•
Fe2O3T	•	٠		•	▼	٠		▼	▼		•	•	•	•	•	•	•	•	٠	•	•		•	•	•	•		•		•
MgO	•	٠		•	▼	٠	•	•	▼		•	•	•	٠	•	•		•	٠	•	•			•		•		•		•
CaO	•	•		•		٠	•	•	▼		•	•	•	•	•			•	•	•	•		•	•	•			•		•
Na2O	•	•		•	▼	٠	•	•	▼		•	▼	•	•	•	•		•		•	•		▼	•	•	•		•		•
K2O	•	•		•	•	•		•	•		•	•	•	•		•		•	•	•	•		•	•		•		•		•
P2O5	•			•	▼	٠		▼	▼		•	•	•	٠	•	•		•	•	٠	•			•	•	•		•		•
Ва	•	٠	٠				•		▼	▼	•			٠		•	•		٠	٠	•	٠		•	٠	•	•	•	٠	•
Be	•	٠	٠						•					▼		•			٠	٠	•	٠			٠			•		•
Bi	•		٠											•							•									•
Ce	•	٠	•				•		▼	▼			٠	•		•	•		•	•	•	•		٠	٠	•	•	•	•	•
Co	•	٠	٠				•		•	•			•	•		•			٠	•	•	٠		٠	٠		•	•		•
Cs	•	٠	٠				•		•	•			•	•	•	•			•	•	•			•	•	•	•	•		•
Cu	•	٠	٠				•		▼											•	•	•		٠	٠			•		•
Dy	•	٠	•				•		•	•			٠	٠	•	•	•		•	٠	٠	•		٠	•	•	•	•	•	•
Er	•	٠	•				•		•	•			٠	٠	•	•	•		•	٠	٠	٠		٠	•	•	•	•	•	•
Eu	•	٠	•				•			•			٠	٠	•	•	•		•	٠	٠	•		٠	•		•	•	•	•
Ga	•	٠					•		▼					٠	•	•	•		•	٠	•	٠		٠	•	•		•	•	
Gd	•	٠	٠				•		•	•			•	٠	•	•	•		•	•	•	•		•	٠		•	•	•	•
Hf	•	٠	٠				•		•	•			•		•	•	•		•	•	•	•		•	٠	•	•	•	•	•
Ho	•	٠	•				•		•	•			•	•	•	•	•		٠	•	•	•		•	•	•	•	•	٠	•
In	•		•						•							•					•				•				•	
La	•	٠	•				•		•	•			٠	٠	•	•	•		•	٠	٠	•		٠	•	•	•	•	•	•
Li	•	٠	٠				٠		٠	٠				•	•	•			٠	٠	•	٠		٠			•	٠		•
Lu	•	•	٠				•		•	•			•	٠	•	•	•		٠	•	•	•		•	•	•	•	•	•	•
Mn	•	٠	٠	٠	•	٠	٠		•	•	٠		٠	٠		•	٠		٠	•	•	•		٠	٠	•	•	•		•
Мо	•	٠	•				•		•					٠		•				•	•				•		•	•	•	
Nb	•	٠	•				•		•	•			•	•	A	•	٠		•	٠	•	٠		٠	•	•	•	•	•	•
Nd	•	٠	•				•		•	•			•	•	•	•	٠		•	٠	•	٠		٠	•	•	•	•	•	•
Ni	•	•	•		•		•		•				•	•	•	•			•	•	•	•		•	٠	•		•		•
Pb -	•	•	•				•		•	•			•	•	•	•	•		•	•	•	•		•	•	•	•	•		•
Pr	•	•	•				•		•	•			•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•
Rb	•	•	•				•		•	•	•		•	•		•	•		•	•	•	•		•	•	•	•	•		•
Sb	•		•						•					•		•					•	•			•	•		•		
Sm	•	٠	•				•		•	•			•	•	•	•	•		•	•	•	•		٠	•	•	•	•	•	•
Sr –	•	•	•				•		•	•	•		•	•	•	•	•		•	•	•	•		•	•	•	•	•		•
	•	•	•				•		•	•			•		•	•	•		•	•	•	•		•	•	•	•	•	•	•
Ib Ti	•	•	•				•		•	•			•		•	•	•		•	•	•	•		•	•	•	•	•	•	•
in Tuu	•	•	•	_	_	_	•	_	•	•		_	•	•	•	•	•	_	•	•	•		_	•	•	•	•	•		•
im	•	•	•				•		•	•			•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•
U	•	•	•				•		•	•			•	•	.	•	•		A	•	•	•		•	•	•	•	•		•
v	•	•	•	U			•	U	•	•	U	U	•	•	•	•	٠	U		•	•	•	U	•	٠		•	•		•
	D2	D3	D4	D6	D7	D8	D10	D11	D12	D13	D14	D16	D17	D18	D19	D20	D21	D22	D24	D27	D28	D32	D33	D34	D37	D42	D43	D44	D45	D47

z > 3
2 < z < 3
OK
-3 < z < -2
z < -3
No data

Y Yb	•	•	•				•		•	•			•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•
Zr	•	•	•				•		•	V	•		•	٠	•	٠	•		•	٠	•			٠	•	T	٠	٠	•	•
	2	e	4	9	2	ω	9	Ξ	12	13	4	16	17	-20	19	20	51	22	24	27	28	32	33	34	37	42	43	44	45	47

Figure 3: G-Probe 25a - Phonolite, KPho-2G Glass. Multiple z-score charts for laboratories participating in the G-Probe 25a round. Symbols indicate whether or not an elemental result complies with the -2<z<+2 criteria (see key).

SiO2	
TiO2	
AI2O3	
Fe2O3T	
MqO	
CaO	
Na2O	
K2O	
P2O5	
Ва	
Be	п • • • п
Bi	
Ce	
Со	
Cs	
Cu	
Dy	
Er	
Eu	
Ga	
Gd	
Hf	
Ho	
In	
La	
Li	
Lu	
Mn	
Мо	
Nb	
Nd	
Ni	
Pb	
Pr	
Rb	
Sb	
Sm	
Sr _	
Ta	
l b	
l'h T	
Im 	
U	
V	
	5 1 0 2 2 3 4 8 2 2 3 3 1 0 2 3 1 0 2 3 3 3 1 0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

z > 3
2 < z < 3
OK

•

•

-3 < z < -2

z < -3

No data

Figure 3: G-Probe 25a - Phonolite, KPho-2G Glass. Multiple z-score charts for laboratories participating in the G-Probe 25a round. Symbols indicate whether or not an elemental result complies with the -2<z<+2 criteria (see key).