

G-Probe 27 — an International Proficiency Test for Microanalytical Laboratories — Report on Round 27 (Basanite glass, BOOS-1G) / November 2023

Dieter Garbe-Schönberg¹, Peter Webb²*, Steve Wilson³, Philip Potts², and Regina Mertz-Kraus⁴

 ¹CAU Kiel University, Institute of Geosciences, Ludewig-Meyn-Strasse 10, 24098 Kiel, Germany.
 ² Retired from the Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
 ³ Retired from U.S. Geological Survey, Box 25046, MS 964D, Denver Federal Centre, Denver, CO 80225, USA
 ⁴Johannes Gutenberg University Mainz, Institute of Geosciences, J.J. Becher-Weg 21, 55099 Mainz, Germany *Corresponding author, Peter Webb: e-mail <u>aprobe.iag@gmail.com</u>

Keywords: proficiency testing, quality assurance, microanalysis, G-Probe 27, BOOS-1G, Basanite glass

Abstract

Results are presented for Round 27 of the G-Probe Proficiency Testing programme for microanalytical laboratories, organised by the International Association of Geoanalysts (IAG). The test material distributed in this round of G-Probe was the Basanite glass, BOOS-1G, produced at the United States Geological Survey (USGS) by Steve Wilson from material provided by Regina Mertz-Kraus of Johannes Gutenberg University Mainz, Germany. The starting material for the glass was a basanite collected from the Eifel volcanic field in Germany. In this report, the data contributed by 42 laboratories are listed, together with an assessment of consensus values as best estimates of the true value, consequent z-scores and a series of charts that show the distribution of contributed values thus revealing the overall performance of participating laboratories. Assigned values were conferred for 44 elements, and provisional values for a further 12, out of 63 elements reported, but 7 were either reported in insufficient numbers or the results were too variable to be assessed in any way.

Introduction

This twenty-seventh round of G-Probe, the international proficiency testing programme for microanalytical laboratories, was conducted in a similar manner to recent rounds. The programme is organised by the IAG and conforms with the published G-Probe Protocol (IAG, 2020).

The overall aim of the programme is to provide participating laboratories with *z*-score information for their reported measurement results so that each laboratory can decide whether the quality of their data is satisfactory in relation both to the G-Probe fitnessfor-purpose criterion and to the results submitted by other laboratories contributing to the round. In circumstances where *z*-scores are unsatisfactory, a participating laboratory is encouraged to investigate its procedures for unsuspected analytical bias and to take corrective action if it appears justified. The programme is designed to be part of the routine quality assurance procedures employed by microanalytical geochemistry laboratories.

G-Probe Steering Committee:

D. Garbe-Schönberg (principal organiser), P.C. Webb (results coordinator and website administrator),
P.J. Potts (results reviewer), M. Thompson (statistical advisor), C.J.B. Gowing (distribution coordinator),
L. Danyushevsky, R. Mertz-Kraus and A. Kronz (analytical advisors).

Timetable for Round 27 of G-Probe:

Distribution of test material: May 2023 Results submission deadline: 6th September 2023 Release of report: November 2023

G-Probe 27 Test Material details

The basanite starting material for this test sample was collected as sample "BOOS" from the West Eifel volcanic field, Germany, and milled to a powder under the supervision of Dr R. Mertz-Kraus. The material was subsequently converted to glass by Dr S. Wilson at the USGS by fusion in a platinum bowl at 1500 °C for six hours. The molten material was poured into a platinum boat and rapidly lowered into a water bath for quenching and subsequent fragmentation. Glass fragments were collected for supplying either as loose chips or mounted into 12.5 mm (½") epoxy plugs, with final polishing at University of Göttingen (A. Kronz). These items were provided as the test material BOOS-1G for G-Probe Round 27.

The IAG G-Probe Protocol (IAG, 2020) requires assessment of homogeneity of the glass test material following ISO Guide 35:2017. Two fragments of the test material were initially evaluated for homogeneity at Johannes Gutenberg University Mainz with 11 x 8 point analyses using EPMA, and 10 x 10 single-spot analyses using LA-ICP-MS. A subset of 10 chips was analysed by LA-ICP-MS at Kiel University with 10 points per chip to assess between-chip heterogeneity. In addition, one chip was analysed with 100 points for estimating withinchip micro-heterogeneity. After careful assessment of all these homogeneity data, the basanite glass fragments were considered suitable for use in this proficiency test.

Submission of results

For G-Probe 27, participants were instructed to apply their routine measurement procedures to provide a measurement result for each glass fragment representative of its average composition (Result A and Result B).

A total of 2740 measurement results submitted by 42 laboratories are listed in Table 1. Where results A and B were provided, the average was used for the subsequent data assessment. Of the resultant 1654 values reported for individual analytes, 1408 values were by LA-ICP-MS from 31 laboratories, 132 by EPMA from 13 laboratories, 37 by SEM from four laboratories, 10 by μ -XRF by one laboratory and two laboratories provided 67 values without defining a method.

Target values and results summary

Robust statistical procedures were used to derive a consensus value from the contributed data for each elemental component in the test material. These procedures included the evaluation for each dataset of the Huber robust mean, the median or a mode derived from a kernel density distribution as detailed by Thompson (2017). Evaluations of consensus values involved a critical assessment of the distribution of sequentially ordered results for each measurand.

Consensus values were credited with assigned status on the basis that:

- (i) sufficient laboratories had contributed data for estimating a measurand (usually a minimum of 15);
- (ii) visual assessment gave confidence that a substantial proportion of the results distribution was symmetrically disposed about the consensus;
- (iii) the ratio of the uncertainty in the location estimate to the target precision (as defined below) was an acceptably small value; and
- (iv) where possible, an evaluation of measurement results by procedure was judged to provide no clear evidence of procedural bias among the measurement results from which the consensus was derived.

Where these criteria were nearly, but not fully met, measurands were credited with 'provisional' rather than 'assigned' status. Instances of provisional status were identified because either:

- (i) a smaller number of results (less than 15 but at least8) contributed to the consensus, or
- (ii) the results were unduly dispersed in relation to the target precision (*H*_a, see below), or
- (iii) the distribution of results was significantly skewed(but not severely enough to preclude the recognition of a clear consensus), or
- (iv) procedural bias was identified but a target value could nevertheless be recognised based on the most coherent part of the overall data distribution conforming approximately to a random sample from a normal distribution.

Where data were either insufficient in number, or the distribution was too variable or too highly skewed for

the confident estimation of a consensus to provide *z*-scores, data distributions are presented 'for information' only.

The resulting consensus values were those judged to be the best available estimates of the true composition of the test material and therefore suitable for use as target values for proficiency testing. It should be noted, however, that in many cases, these estimates are derived from a single analytical method.

Data distributions for those measurands given 'assigned' or 'provisional' status are presented in Figure 1, and those for which no status could be conferred are shown 'for information' in Figure 2. Measurement results in the Figure 1 and 2 data distribution plots are presented in order of increasing magnitude and identified according to laboratory code. Data symbols are coded by colour and shape according to the method of measurement. For major elements, results were obtained by EPMA, LA-ICP-MS, SEM and µ-XRF. Electron beam results for major elements are broadly in agreement with LA-ICP-MS results, although the LA-ICP-MS results are often more variable. Consensus values were generally reasonably well defined for most major elements, but less so for Na₂O, Fe₂O₃, and P₂O₅, the latter two being credited only with provisional status because, although a significant amount of data was available, a clear point of inflection was not apparent and a large proportion of the data fell outside the (z=2) data quality limits. There were also a number of discordant results for SiO₂, TiO₂, MgO, Na₂O and K₂O, but sufficient numbers were in accord to warrant assigned status.

For most trace elements there is no option other than to make assessments based on LA-ICP-MS data. Concerns, therefore, about the possibility of single method bias, noted above, must be in principle kept in mind and the outcomes should be regarded with caution in the reflection of true values. Nevertheless, the derived consensus values represent the best that currently can be obtained and therefore are considered appropriate for the purposes of this proficiency test.

For the majority of trace elements the agreement among almost all of the results submitted is remarkably good, especially so for Cs, Eu, Hf, Ho, La, Li, Lu, Pr, Sm, Tb, Tm, and U, with very clear consensus values defined by robust means or medians. The mode frequently provides a better estimate of the consensus value when the data distribution exhibits asymmetry. However, all of those distributions merited only provisional status. Ag, As, Bi, Ge, In, Sb, Sn and Tl were considered to be of provisional status in part because of less well-defined data distributions and in part because there were only marginally sufficient values contributing to the consensus. Sr was designated provisional on account of the apparent bimodality of the data, and Zn owing to the high level of dispersion of the data although the distribution overall was relatively symmetrical.

Several laboratories in this round required values of a major element oxide for internal standardisation of LA-ICP-MS data. Values of 43.4 g/100g for SiO₂ and/or 12.0 g/100g for CaO were provided for laboratories coded H3, H13, H16, H18, H25, H30, H33, H38, H42, H46 and H56. These values compare well with G-Probe 27 consensus values of 43.82 g/100g (SiO2) and 11.78 g/100g (CaO). When assessing data distributions for major elements, notice was taken of the more coherent sets of data derived by EPMA. For trace elements a tendency was noted for results derived from calibrations involving USGS reference materials to be relatively more consistent. That consideration was incorporated in the choice of an appropriate consensus value.

Table 2 lists assigned and provisional values for 9 major components and 47 trace elements in G-Probe 27 (BOOS-1G). Data distribution charts for the 56 measurands that were judged to have satisfactory distributions for consensus values to be conferred with assigned or provisional status are shown in Figure 1. These are: SiO₂, TiO₂, Al₂O₃, Fe₂O₃T*, MgO, CaO, Na₂O, K_2O , P₂O₅*, Ag*, As*, Ba, Be, Bi*, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Ga, Gd, Ge*, Hf, Ho, In*, La, Li, Lu, Mn, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sb*, Sc, Sm, Sn*, Sr*, Ta, Tb, Th, Tl*, Tm, U, V, W, Y, Yb, Zn* and Zr. Of these, values of the 12 analytes marked '*' were credited with provisional status for reasons given above.

Data distribution plots for the 4 analytes: Au, B, Cd and S are plotted in Figure 2 for information only, as the data were either insufficient in number, or the data distribution was too highly dispersed or too highly skewed for the estimation of a consensus to provide *z*-scores.

Observations

The form of data distribution plots for most elements provides sufficient, and in many cases solid justification for conferring assigned values. It was apparent, however, that data distributions of many major elements exhibited notably high (SiO₂, Al₂O₃, Fe₂O₃, CaO, Na₂O and P₂O₅) and low (SiO₂, TiO₂, Fe₂O₃, MgO, Na₂O, K₂O and P₂O₅) tails. While many of the high and low values are reported from LA-ICP-MS measurements, EPMA provides some of the low values for TiO₂, Fe₂O₃ and Na₂O; possibly in the latter case caused by too high beam currents and/or insufficient defocusing of the beam resulting in loss of Na due to migration and/or volatilisation during measurement. In contrast, two Ba measurements by EPMA and one for Ni are high. It is clear that the SEM and μ -XRF measurements are more variable than the EPMA results for major elements.

The remarkable consistency of data (though provided entirely by LA-ICP-MS) for most trace elements is apparent, as only a few trace elements, including Ga, Ge, Sc, Sn, and Zn, exhibit notable high tails, and likewise there are small low tails for some elements but they are significant only for Cr, Mn, Sr, V, Y, Zn and Zr. High values for Ga might be caused by an unidentified interference from doubly charged Ba given its relatively high mass fraction of 710 mg kg⁻¹ in this basanite.

While no systematic influence of the ICP-MS instrument type or laser wavelength could be detected, there is some evidence for systematic bias depending on the choice of calibration materials. From the metadata provided by participating laboratories it is possible to recognise a calibration that was made solely using NIST-SRM600 series glasses, or solely by using matrixmatched calibration materials, e.g., from USGS, or indeed, by both. It appears that results for most REE, Y, Sr, Zr, Hf, Ta, Th, U and also V when the calibration involves matrix-matched materials tend to be more consistent and slightly higher in comparison to results from calibrations using NIST glasses only, or conversely, NIST-calibrated results for these elements tend to be lower than those acquired from matrix-matched calibrations.

Z-score analysis

Assessment of submitted results followed the strategy adopted in recent rounds of G-Probe (Wilson et al.

2019; Wilson et al. 2020; Garbe-Schönberg et al. 2021) and detailed in the G-Probe protocol (IAG, 2020). Based on an assessment of the variation of measurement results in earlier rounds, and in order to provide sufficient discrimination for the proficiency test to be helpful to participating laboratories, the fitness for purpose criterion applied throughout was provided by a modified form of the Horwitz function:

$$H_{a} = k \cdot X_{a}^{0.8495}$$

Where- H_a is the standard deviation for proficiency, also referred to as the target precision, calculated for each measurand; and X_a is the best estimate of the true composition, also known as the 'target value' (and may be credited with assigned or provisional status). The values of H_a and X_a are represented in units of mass fraction. The factor k = 0.01, is regarded as appropriate for laboratories working to a 'pure geochemistry' standard of performance, where analytical results are designed for geochemical research and where care is taken to provide data of high precision and accuracy, sometimes at the expense of a reduced sample throughput rate.

Z-scores were calculated for the average measurement result submitted by each laboratory from:

$$z = [X - X_a] / H_a$$

where X is the (average) measurement result submitted, X_a is the target value (assigned and provisional) and H_a is the target precision (all as mass fractions).

Z-score values for results submitted to G-Probe 27 are listed in Table 3. *Z*-scores derived from provisional values of measurands are shown in italics.

Participating laboratories are invited to assess their performance using the following criteria:

Z-score results in the range -2 < z < 2 are considered to be 'satisfactory' (in the sense that no action is called for by the participant). If the z-score for any element falls outside this range, especially if it is outside the range -3 < z < 3, laboratories are advised to examine their procedures and, if necessary, take action to ensure that their determinations are not subject to unsuspected analytical bias. Should a participating laboratory decide that this performance standard is not appropriate for assessment of their measurement results, they are invited to recalculate their *z*-scores by substituting the appropriate value of the standard deviation for proficiency testing, H_a , into the equation for the calculation of *z*-scores (i.e., $z = [X - X_a] / H_a$). Adoption of such an approach should include a justification as to why an amended value of H_a is more appropriate for assessment of their data.

Overall performance

A summary of the overall performance of individual laboratories for this round is plotted in multiple *z*-score charts in Figure 3. In these charts, the *z*-score performance for each element is distinguished by symbols that make it easy to identify whether the measurements results were satisfactory or gave *z*-scores that exceeded the action limits. This chart is designed to help individual laboratories judge their overall performance in this proficiency test. Note, however, that participants should always review their *z*-scores in accordance with their own fitness-forpurpose criteria.

Participation in future rounds

The benefit from proficiency testing arises from regular participation and laboratories are invited to contribute to Rounds 29 and 30 of G-Probe, the test samples for which will be distributed in spring 2024.

Acknowledgements

The authors wish to thank Thomas Meisel for development of procedures involving the Shiny App to facilitate the visualisation and analysis of proficiency testing datasets and to permit the derivation of modes according to Thompson (2017). We also thank Andrea Mills and Charles Gowing (BGS, Keyworth) for arranging the dispatch and delivery of test materials, and A. Kronz (University of Göttingen, Germany) for final polishing of the epoxy mounts.

References

Garbe-Schönberg D., Webb P.C., Wilson S.A., Mertz-Kraus R., and Potts P.J. (2021) G-Probe 24 — an International Proficiency Test for Microanalytical Laboratories — Report on Round 24 (Basanite glass, BKWE-1G) / February 2021. International Association of Geoanalysts: Unpublished report.

IAG (2020) Protocol for the Operation of the G-Probe Proficiency Testing Scheme. International Association of Geoanalysts (Keyworth, UK), 20pp.

<u>http://www.geoanalyst.org/wp-</u> <u>content/uploads/2020/08/G-Probe-protocol-August-</u> <u>2020.pdf</u>.

ISO (2017) GUIDE 35:2017(E): Reference materials – Guidance for characterization and assessment of homogeneity and stability. – International Organisation for Standardisation (Geneva, Switzerland), 105pp.

Thompson, M. (2017) On the role of the mode as a location parameter for the results of proficiency tests in chemical measurement. *Anal. Methods*, **9**, p.5534-5540.

Wilson S., Webb P.C. and Garbe-Schönberg D. (2019) G-Probe 22 – an International Proficiency Test for Microanalytical Laboratories – Report on Round 22 (Synthetic basanite, SynB-1G(GSC-2G)) / October 2019. 30pp. International Association of Geoanalysts: Unpublished report.

Wilson S., Webb P.C., Garbe-Schönberg, D., Potts P.J. and Danyushevsky, L. (2020) G-Probe 23 — an International Proficiency Test for Microanalytical Laboratories — Report on Round 23 (Norite glass, NoSM-1G) / February 2020. International Association of Geoanalysts: Unpublished report.

		114.4	114.5	112.4	1120			110.4	LICD	117.4		110.4	1100
Lab Co	ode	H1A	нів	H3A	нзв	H5A	нэв	H6A	H6B	H/A	н/в	H8A	H8B
SiO2	g 100g-1	44.65		42.8	42.9	45.584		44.483	43.802	43.78	43.83	43.34	43.52
TiO2	g 100g-1	2.98		2.77	2.88	2.564		2.984	2.926	2.87	2.88	2.19	2.18
AI2O3	g 100g-1	12.609		11.6	11.8	12.843		12.243	12.389	12.79	12.79	12.31	12.32
Fe2O3T	g 100g-1	11.895		10.5	10.8	11.333		11.618	11.99	11.6	11.57	10.87	10.85
MgO	g 100g-1	11.188		7.85	7.93	10.294		10.844	10.85	10.78	10.77	11.07	11.08
CaO	g 100g-1	11.588		14	14	11.516		11.406	11.375	11.77	11.78	11.38	11.37
Na2O	g 100g-1	3.322				3.227		3.049	3.342	3.44	3.42	3.09	3.13
K2O	g 100g-1	1.766		1.66	1.77	1.787		1.75	1.673	1.79	1.79	1.76	1.75
P2O5	g 100g-1			5.36	6.49	0.689		0.617	0.58	0.697	0.701	0.69	0.68
Ag	mg kg-1	0.376										0.54	0.53
As	mg kg ⁻¹	1.219		2.06	2.18	1.43						1.81	1.62
Au	mg kg ⁻¹												
в	ma ka-1			4.63	4.16	4.68						9.11	7.05
Ba	ma ka-1	714.351		730	740	652						692	691
Be	ma ka-1	1 411				1 43						1.58	1.55
BC Bi	ma ka-1	0.029				0.022						0.023	0.025
C4	ma ka-1	0.020				0.022						0.025	0.023
Co	mg kg-1	100,100		110	110	102						106	106
Ce	nig kg	109.109		119	110	102						100	100
	nig kg	40,402		392	323	50						50.5	50.0
	mg Kg ⁻ '	49.183		4/./	40.0	50						50.5	50.9
Gr	mg kg ⁻¹	583.89		534	530	4/8						525	526
US	mg kg ⁻¹	0.673		U.66	0.59	0.7						0.64	0.64
Cu	mg kg ⁻¹	56.273				61.2						53.7	52.9
Dy	mg kg ⁻¹	5.302		5.8	5.72	5.09						5.26	5.28
Er	mg kg ⁻¹	2.351		2.64	2.47	2.3						2.25	2.31
Eu	mg kg ⁻¹	2.859		2.91	2.61	2.61						2.74	2.74
Ga	mg kg ⁻¹	18.596		52.6	53.5	94.4						19	18.2
Gd	mg kg ⁻¹	7.413		8.52	8.47	7.17						7.24	7.22
Ge	mg kg ⁻¹	1.301		1.46	1.57	4.02						6.26	5.65
Hf	mg kg ⁻¹	5.052		5.32	5.37	4.8						4.86	4.88
Но	mg kg ⁻¹	0.924		0.95	0.99	0.9						0.91	0.9
In	mg kg ⁻¹	0.078										0.072	0.074
La	mg kg ⁻¹	57.779		60.5	60.1	54.7						56.3	56.7
Li	mg kg ⁻¹	6.195		6.47	6.26	6.07						5.99	6.03
Lu	mg kg ⁻¹	0.25		0.27	0.29	0.24						0.24	0.25
Mn	mg kg ⁻¹	1353.03		1291	1297	1409				1384	1370	1376	1392
Мо	mg kg ⁻¹	2.876		2.35	2.61	2.88						2.69	2.67
Nb	mg kg ⁻¹	79.222		78	79	74.1						75.7	75.7
Nd	mg kg ⁻¹	45.289		48.1	47.7	44.1						45.9	45.8
Ni	mg kg ⁻¹	201.623		215	218	198						212	214
Pb	mg kg ⁻¹	4.72		4.81	4.28	4.83						4.97	4.98
Pr	mg kg-1	11.529		12.2	11.8	11.3						11.6	11.6
Rb	mg kg ⁻¹	47.009		49	48.6	48						45	44.8
Re	mg kg ⁻¹												
s	mg kg ⁻¹												
Sb	mg kg ⁻¹	0.127		0.06	0.06	0.149						0.18	0.19
Sc	mg kg ⁻¹	28,178		32.9	33	27.7						41.2	38.5
Se	mg kg ⁻¹												
Sm	ma ka-1	8 252		9.42	9.26	8.5						8.66	8 72
Sn	ma ka-1	1.51		1.28	1.48	1 77						1.86	1.82
er	ma ka-1	832 015		830	820	692						807	805
т. Т.	ma ka-1	4 608		3.48	3.74	3.82						3.83	3 79
Ть	mg kg-1	4.000		1.02	0.09	0.02						0.05	0.05
TD	nig kg	0.950		1.02	0.96	0.94						0.95	0.95
10 Th	ing kg ⁻¹	7 070		7.00	6.00	6.70					<u> </u>	6.00	6.00
	mg Kg ⁻¹	1.0/9		7.08	89.0	0.70						0.09	80.0
	mg Kg ⁻ '	0.029		0.00	0.05	0.070						0.037	0.034
I m	mg kg ⁻¹	0.294		0.39	0.35	0.279					ļ	0.282	0.281
U	mg kg ⁻¹	1.805		1.93	2.1/	1.65						1./1	1.72
v	mg kg ⁻¹	295.357		262	283	266.9						2/4	2/5
w	mg kg ⁻¹	0.98		0.73	0.72	1.08					ļ	1.08	1.05
Y	mg kg ⁻¹	25.32		24.8	25.1	23.2					ļ	23.6	23.7
Yb	mg kg ⁻¹	1.865		1.5	1.59	1.75					ļ	1.75	1.77
Zn	mg kg ⁻¹	97.031		116	118	129.4					ļ	105	106
Zr	mg kg ⁻¹	232.292	1	258	240	204	1	1	1	1	I	216	217

Lab Q		LIQA	ЦОР	LI11 A	LI11 D	LI12A	LI12D	H14A		LI16A	LI16D	LI17A	LI17D
Lab Co		ПЭА 44.15	44.09	12.60	12 FG	п іза 40.72	пізь	ПІ4А 44.12	П 14D	пюа	піов	15 019	П1/В 45 706
5102	g 100g ·	44.13	44.06	43.09	43.30	40.72		44.12	44.040	2,000		45.910	45.790
1102	g 100g ·	0.842	0.85	3.001	2.972	2.799		2.834	2.827	2.089		2.7139	2.7097
AI2U3	g 100g ⁻¹	12.75	12.73	12.87	12.86	12.06		12.883	12.722	13.317		13.087	12.987
Fe2U31	g 100g ·	10.46	10.4	11.9	11.94	11.05		11.505	11.039	11.45		11.024	11.044
MgO	g 100g ·	0.0	0.01	10.9	12.02			10.871	10.751	9.008		9.9174	9.9667
CaO	g 100g-1	12.06	12.1	12.06	12.02			11.720	11.73	11.448		11.043	11.001
Nazo	g 100g-1	2.17	2.2	3.301	3.538			3.469	3.455	3.217		3.0700	3.0589
K20	g 100g-1	0.831	0.832	1.804	1.849			1.769	1.750	1.77		2.0077	2.0102
P205	g 100g-'	0.82	0.783	0.7105	0.7123			0.685	0.675	0.5702		0.6474	0.6455
Ag	mg kg ⁻ '			0.3141	0.3237					0.3877		0.6226	0.485
As	mg kg ⁻¹			1.527	1.436							1.8271	1.8473
Au	mg kg⁻¹											0.05	0.0416
В	mg kg ⁻¹			6.48	5.92	4.433						7.9449	7.2571
Ва	mg kg ⁻¹	872	845	715.7	709.5	714.9		726	805	708.255		718.68	724.76
Be	mg kg ⁻¹			1.564	1.489	1.56				1.359		1.4715	1.3187
Bi	mg kg ⁻¹			0.023	0.0222								
Cd	mg kg ⁻¹			0.2883	0.2091							0.3737	0.3943
Ce	mg kg ⁻¹			112.2	111.6	114.1				106.318		108.11	109.97
СІ	mg kg ⁻¹	526	439										
Co	mg kg ⁻¹			51.34	51.25	50.48				48.115		52.303	53.199
Cr	mg kg ⁻¹	65	78	503.1	495.3	353.8				490.169		496.39	504.04
Cs	mg kg ⁻¹			0.7196	0.7147	0.678				0.655		0.7227	0.7236
Cu	mg kg ⁻¹			64.24	61.97	54.39				57.618		64.409	64.835
Dy	mg kg ⁻¹			5.731	5.72	5.47				5.258		5.1142	5.2938
Er	mg kg ⁻¹			2.572	2.573	2.31				2.248		2.3687	2.3652
Eu	mg kg ⁻¹			2.858	2.855	2.802				2.655		2.6952	2.7416
Ga	mg kg ⁻¹			19.55	19.39	36.22				17.6		19.469	19.792
Gd	mg kg ⁻¹			8.237	8.09	7.466				7.174		7.5463	7.5883
Ge	mg kg ⁻¹			1.545	1.568							1.6755	1.546
Hf	mg kg ⁻¹			5.36	5.287	4.95				5.218		5.0715	5.0887
Но	mg kg ⁻¹			0.9791	0.9826	0.913				0.8923		0.9348	0.9177
In	mg kg ⁻¹			0.075	0.077					0.0833		0.2891	0.2411
La	mg kg ⁻¹			59.37	58.89	58.97				56.127		56.822	57.065
Li	mg kg ⁻¹			6.333	6.371	6.01				6.144		6.5656	6.7498
Lu	mg kg ⁻¹			0.2666	0.2658	0.24				0.2266		0.2555	0.232
Mn	mg kg ⁻¹	1283	1242	1451	1459	1348.6		1362	1352	1346.761		1406.5	1405.6
Мо	mg kg ⁻¹			2.961	2.886	2.825				2.772		2.9921	2.6962
Nb	mg kg ⁻¹			81.65	81.28	80.13				76.576		78.776	78.387
Nd	mg kg ⁻¹			48.68	48.8	47.38				44.488		44.733	44.029
Ni	mg kg ⁻¹	311	335	206.9	206.9	198.41				192.991		216	218.08
Pb	mg kg ⁻¹			5.046	5.038	4.629				4.862		5.4108	5.4196
Pr	mg kg ⁻¹			12.35	12.31	12.5				11.544		11.818	11.949
Rb	mg kg ⁻¹	133	95	50.07	49.66	44.13				47.024		53.049	54.169
Re	mg kg ⁻¹												
s	mg kg ⁻¹	231	240							502.33		502.76	465.76
Sb	mg kg ⁻¹			0.1431	0.1439	0.133							
Sc	mg kg ⁻¹			29.89	29.73	29.16				28.311		34.158	33.64
Se	mg kg ⁻¹												
Sm	mg kg ⁻¹			9.218	9.205	9.326				8.416		8.4448	8.5568
Sn	mg kg ⁻¹			1.99	1.97	1.803				1.964		2.0439	2.0241
Sr	mg kg ⁻¹	933	919	876.5	878.2	788.7		763	783	789.47		815.73	820.81
Та	mg kg ⁻¹			4.338	4.335	4.07				3.977		3.9712	3.9867
Tb	mg kg ⁻¹			1.044	1.038	1.01				0.9105		0.9605	0.9749
Те	mg kg ⁻¹												
Th	mg kg ⁻¹			7.254	7.265	6.69				6.745		6.7503	6.8766
ті	mg kg ⁻¹			0.034	0.032								
Tm	mg kg ⁻¹			0.3069	0.3101	0.28				0.283		0.2778	0.2789
U	mg kg ⁻¹			1.762	1.766	1.628				1.768		1.7713	1.8193
v	mg kg ⁻¹	486	487	284.1	283	282.1				275.226		281.3	280.74
w	mg kg ⁻¹			1.157	1.125	1.064						1.138	1.1659
Y	mg kg ⁻¹			26.21	26.05	23.29				23.037		23.272	23.355
Yb	mg kg-1			1.914	1.955	1.952				1.692		1.7136	1.7079
Zn	mg kg-1			92.36	90.11	110.5				121.425		117.82	119.75
Zr	mg kg-1	378	378	229.4	227	206.8				208.672		209.54	206.37

Lab Co	ode	H18A	H18B	H20A	H20B	H21A	H21B	H25A	H25B	H26A	H26B	H27A	H27B
SiO2	g 100g-1	43.4		42.75802603	42.59729564	43.41						46.7	46.7
TiO2	g 100g-1	2.42		5.745045598	5.713988778	2.817						2.9	2.9
AI2O3	a 100a-1	12.51		12 61859974	12 55382447	12.86						12.4	12.4
Fo202T	g 100g-1	6.2		12.04	12.00002.111	11.33						11.1	11.1
Fezosi	g 100g	0.2		12.04	12.11	11.35						11.1	11.1
MgO	g 100g-'	8.43		10.68277387	10.84578532	10.29						10.8	10.8
CaO	g 100g-1	12		12.76665281	12.75648198	11.85						11.5	11.4
Na2O	g 100g-1	3.36		3.28911341	3.280966767	3.436						3.3	3.3
K2O	g 100g-1	1.56		1.18444141	1.171737989	1.759						1.8	2
P2O5	g 100g-1	0.53		0.646727093	0.668359416	0.706						0.6	0.6
Δa	ma ka-1	0.36						0 305					
A9	ma ka-1	1.24		1 200222222	1 604666667			1.40					
AS	ilig kg	1.34		1.299333333	1.024000007			1.49					
Au	mg kg ⁻¹	0.01						0.011					
В	mg kg-1	236.1		4.303	4.239666667	4.124							
Ва	mg kg ⁻¹	622		761.3433333	757.4336667	702.9		681		705.31	720.08		
Be	mg kg ⁻¹	1.25		1.234666667	1.381666667	1.331		1.2		1.75	1.33		
Bi	ma ka-1	0.04						0.016					
Cd.	ma ka-1	0.32						0.104					
Cu	ing kg	0.32		440.4000000	100 00 10007	100.1		0.194		400.40	444.07		
Ce	mg kg-'	98.9		119.1893333	120.0246667	108.1		102		106.18	114.27		
CI	mg kg ⁻¹												
Co	mg kg ⁻¹	47.7		55.70033333	57.118	50.09		49.3		46.21	48.76		
Cr	mg kg ⁻¹	457		546.2736667	553.3006667	514		486		556.64	545.4		
Cs	mg kg ⁻¹	0.68		0.757466667	0.736066667	0.694		0.633					
Cu	ma ka-1	57.8		69 79166667	68 57666667	62.08		53.2		57.03	68.61		
Du	ma ka-1	4.0		E 022	50.070666667	5 470		4.72		51.00 5.24	50.01 E 66		
Бу Б.	ing kg	4.9		3.923	0.070	0.445		4.73		5.54	5.00		
Er	mg kg-'	2.06		2.639666667	2.678	2.415		2.03		2.3	2.41		
Eu	mg kg ⁻¹	2.62		2.979333333	3.016	2.784		2.52		2.77	2.94		
Ga	mg kg ⁻¹	18.49		20.12033333	20.40833333	18.9		17.6		19.74	20.22		
Gd	mg kg ⁻¹	7.42		8.602333333	8.523	7.839		6.58		7.73	8.27		
Ge	mg kg ⁻¹	1.81				1.443		1.45					
Hf	ma ka-1	4.66		5.671666667	5.625	5.227		4.43		5.11	5.29		
111 Ho	ma ka-1	0.80		1 026033333	1.0431	0.060		0.927		0.05	0.00		
	ing kg	0.09		1.020033333	1.0431	0.909		0.027		0.95	0.55		
In	mg kg-'	0.09						0.075					
La	mg kg ⁻¹	55.4		63.44366667	64.21333333	57.42		53.9		56.83	59		
Li	mg kg ⁻¹	6.27		6.812	7.014666667	6.059		5.94		6.7	5.94		
Lu	mg kg ⁻¹	0.23		0.270933333	0.277833333	0.251		0.213		0.25	0.27		
Mn	mg kg ⁻¹	1258		1555.186667	1563.953	1391		1390		1312.66	1390.56		
Mo	ma ka-1	2.42		2,984333333	3.086666667			2.63		2.56	2.58		
Nb	ma ka-1	64.6		94 370	83 08666667	70 71		74.4		97.69	06.23		
	ing kg	04.0		04.379	53.90000007	19.11		14.4		07.00	90.23		
Na	mg kg ·	42.59		52.61133333	51.5006667	40.53		43		45.8	46.66		
Ni	mg kg ⁻¹	187.7		219.5503333	218.1133333	195		190		138.16	203.49		
Pb	mg kg ⁻¹	5.35		5.612	6.080333333	5.304		5.24		4.93	4.85		
Pr	mg kg ⁻¹	10.59		12.933	13.07233333	11.89		11.3		11.76	12.46		
Rb	mg kg ⁻¹	49.7		52.336	53.26933333	49.3		45.3		47.2	48.71		
Re	ma ka-1	0.008											
9	ma ka ⁻¹												
eh.	ma ka-1	0.15		 				0 1 4 2					
30	ing Kg 1	0.10		04 775000	00.0040000	00.00		0.143		07.11	00.00		
Sc	mg kg ⁻¹	27.22		31.77566667	32.08166667	29.88		26.2		27.44	28.99		
Se	mg kg ⁻¹	1.11											
Sm	mg kg ⁻¹	8.26		9.833333333	9.799666667	8.991		8.16		9.03	9.87		
Sn	mg kg-1	3.7		2.39	2.495666667			1.89		1.95	2.22		
Sr	mg kg ⁻¹	737		898.1723333	902.5556667	834		767		815.42	861.42		
Та	ma ka-1	31		4.319333333	4,338	4,156		3,69		4.32	4.62		
ть	ma ka-1	0.05		1.004622222	1 099366667	1.000		0.00		1.05	1.04		
10 T	ing Kg 1	0.90		1.094033333	1.00020000/	1.009		0.000		1.00	1.04		
10	mg kg ⁻¹												
Th	mg kg ⁻¹	6.42		8.133333333	8.094	7.012		6.24		7.23	7.77		
ТІ	mg kg ⁻¹	0.03						0.024					
Tm	mg kg-1	0.26		0.319833333	0.310966667	0.302		0.252		0.29	0.32		
U	mg kg-1	1.64		1.834866667	1.879333333	1.672		1.69		1.72	1.77	i	
v	ma ka-1	251.5		310 1/23323	308 2023333	281 /		271		279 75	274 66		
•		201.0	-	4 477000000	4 0000000000	201.4		4.45		210.10	217.00		
vv	mg kg ⁻¹	1.1		1.177333333	1.238666667			1.15					
Y	mg kg ⁻¹	22.04		27.48166667	27.97366667	25.18		21		24.97	26.49		
Yb	mg kg ⁻¹	1.75		2.132	2.033	1.84		1.52		1.9	1.91		
Zn	mg kg-1	101.2		128.3873333	129.0133333	113.4		125		96.08	97.61		
Zr	mg kg-1	198.7		240.5826667	241.732	222.1		188		216.51	238.4		

Lab Q		LI20A		H30A		H334	L122D	H24A		LI26A	LI26D	LI27A	L127B
Lab Co		H29A	H29B	H3UA	10.05	H33A	H33B	H34A	H34B	H30A	П30D	H3/A	пз/в
SI02	g 100g-1	44.02	44.05	47.03	46.85	44.43006775	44.1389	43.609	43.393	44.05	44.47	39.06	
TiO2	g 100g ⁻¹	2.93	2.92	2.95	2.95	2.798	2.798	2.844	2.888	2.96	2.94	3.4	
AI2O3	g 100g-1	12.82	12.82			12.82	12.54	12.636	12.671	12.98	13.5	14.15	
Fe2O3T	g 100g-1	11.82	11.82	12.3	12.27	12.16	11.96	11.891	11.822	11.05	10.66	13.02	
MgO	g 100g-1	10.71	10.72			10.212	10.382	10.669	10.752	10.97	10.78	11.1	
CaO	g 100g-1	12.28	12.24					11.821	11.897	11.75	11.85	13.51	
Na2O	g 100g-1	3.16	3.16	3.6	3.65	3.366	3.346	3.458	3.468	3.57	3.55	3.43	
K20	a 100a-1	1.65	1.64			1.772	1,754	1,778	1.807	1.7	1.7	1.88	
P205	g 100g-1	0.35	0.36	0.77	0.77			0.667	0.671	0.765	0.763	0.47	
1200	ma ka-1	0.00	0.00	0.39	0.30			0.366	0.349	0.700	0.700	0.47	
Ag	nig kg	0.20	0.20	0.30	0.39	4 405574000	1.044450050	0.300	0.340				
AS	ilig kg	1.11	1.15			1.195571008	1.044159658	1.406	1.459				
Au	mg kg ⁻ '							0.011	0.014				
В	mg kg ⁻¹	31.05	30.09			12.83087614	9.648727584	15.278	13.936				
Ва	mg kg ⁻¹	687.69	688.91	718	724	729.6421182	734.5355169	706.993	709.884	727	689		
Be	mg kg ⁻¹	1.59	1.63			1.324695399	1.357656258	1.549	1.491				
Bi	mg kg ⁻¹	0.02	0.02			0.0389	0.0312	0.024	0.025				
Cd	mg kg-1	0.13	0.13			0.37850955	0.279846172	0.27	0.322				
Ce	mg kg ⁻¹	110.08	110.57	111.4	111	108.4079283	107.6662483	111.46	111.649	112.1	108.4		
CI	mg kg-1												
Co	mg kg ⁻¹	51.13	51.09	54.9	54.5	51.33367568	50.789572	50.734	51	49.6	48.2		
Cr	ma ka-1	534 14	532 73	518	520	549 8712378	549 7944196	525 998	534 328	502.7	500.2		
Cs	ma ka-1	0.68	0.71	0.74	0.75	0.682662244	0.686820208	0.697	0.695				
<u> </u>	ma ka-1	60.00	60.01	6F 6	66.6	61 56550444	59 71262604	61 714	63 633	61.9	50 F		
00 Du	ing Kg	00.08	00.01	00.0	00.0	5 400004040	50.7 1302094	01./14	03.033	0.10	00.0		
	mg kg	5.59	5.7	5.35	5.41	5.428094649	5.278611904	5.625	0.028	0.01	5.79		
Er	mg kg ⁻¹	2.32	2.24	2.42	2.42	2.483922982	2.398320479	2.511	2.518	2.57	2.48		
Eu	mg kg ⁻¹	2.83	2.95	2.84	2.83	2.792284908	2.762190599	2.83	2.836	3.04	2.81		
Ga	mg kg ⁻¹	19.17	18.97	20.3	20.3	18.86605303	18.23649552	18.753	18.903	19.6	18.6		
Gd	mg kg ⁻¹	7.95	8.06	7.29	7.69	8.107859191	7.798604441	7.955	7.951	8.05	7.68		
Ge	mg kg ⁻¹	1.24	1.24			1.412116178	1.416857106						
Hf	mg kg ⁻¹	5.38	5.27	4.98	4.96	5.188087119	5.065580132	5.25	5.267	5.38	5.25		
Но	mg kg ⁻¹	1	0.99	0.96	0.96	0.952167921	0.935182522	0.971	0.975	1.01	0.95		
In	mg kg-1	0.07	0.08	0.1	0.1	0.0756	0.0737	0.084	0.08	0.087	0.079		
La	mg kg ⁻¹	59.15	59.46	58.77	59.17	57.96912059	57.22884336	58,708	58.988	58.35	56.16		
11	ma ka-1	6.39	6.36	6.7	6 71	6 191966013	6 220701826	6.25	6 269	6.1	6		
	ma ka-1	0.26	0.00	0.24	0.24	0 251910265	0.243560709	0.26	0.264	0.28	0.28		
Ma	mg kg-1	1429.17	1429.6	1462	1454	1459 301993	1460 520066	1406.078	1412 012	1308	1302		
MII	ilig kg	1420.17	1420.0	0.70	1434	1430.391002	1409.320000	1400.078	0.001	1390	1392		
Mo	mg kg ^{-,}	2.8	2.83	2.78	2.05	2.836866982	2.832377695	2.893	2.801	2.7	2.5		
ND	mg kg ⁻ '	79.89	80.45	80	80.7	/8./44285/5	77.41430591	80.772	81.349	88.06	82.51		
Nd	mg kg ⁻¹	47.55	48.03	47.14	47.32	47.49788711	46.46966981	48.382	48.354	48.3	46.6		
Ni	mg kg ⁻¹	199.84	199.89	216	215	208.4631335	206.2603826	204.713	203.3	189.7	184.7		
Pb	mg kg ⁻¹	17.52	18.03	5.28	5.36	5.116939621	5.001850235	5.09	5.063	4.81	4.78		
Pr	mg kg ⁻¹	12.14	12.23	12.03	12.15	11.8353403	11.76751483	12.226	12.274	13.05	12.41		
Rb	mg kg ⁻¹	45.4	45.15	52.1	52.6	47.90794531	47.10259644	48.7	48.813	49.3	46.2		
Re	mg kg ⁻¹												
s	mg kg ⁻¹												
Sb	mg kg-1	0.14	0.16			0.187791323	0.178031521	0.156	0.154				
Sc	mg kg ⁻¹	34.04	33.7	29.09	29.69	29.94087706	29.24088466	29.189	29.356				
Se	mg kg-1												
Sm	ma ka-1	9 14	9.24	8.96	8.88	8 914743955	8 847651883	9 134	9 122	9.7	9.1		
Sn.	ma ka-1	1.46	1.44	2.00	2.50	1 685056793	1 662675874	2 277	22	3 17	2.88		
0.	nig kg	927.0	920.7	0.72	2.51	952 0611570	956 7200027	025 200	020 024	990	2.00		
Sr	mg kg	027.9	029.7	625	027	655.0011579	830.7299937	033.360	030.024	860	614		
la	mg kg⁻¹	4.03	4.08	4.08	4.09	4.042749895	3.959984296	4.236	4.224	4.66	4.45		
Tb	mg kg ⁻¹	1.02	1.06	1	1.01	0.994417774	0.968780828	1.028	1.028	1.06	1.02		
Te	mg kg ⁻¹												
Th	mg kg ⁻¹	6.37	6.41	6.91	6.96	7.272750448	7.14118162	7.29	7.281	7.82	7.08		
ті	mg kg-1	0.02	0.02	0.04	0.03			0.038	0.04				
Tm	mg kg ⁻¹	0.31	0.31	0.29	0.29	0.0468	0.0323	0.304	0.306	0.32	0.32		
U	mg kg-1	1.8	1.83	1.83	1.83	0.29514675	0.286025074	1.758	1.759	1.89	1.58		
v	mg kg ⁻¹	294.97	294.1	285	288	1.745238824	1.716783131	278.206	281.023	267	265		
w	mg kg-1	1,13	1,11	1,17	1.2	299,2904267	300.870013	1,11	1,106	0,89	1.09		
Y	ma ka-1	25.46	25 35	24	24.9	1 153619749	1 12230443	25 728	25.912	27.3	25.7		
Vh	ma ka-1	1 0/	1 02	1 9	1 99	25 65054207	24 75474293	1 017	1 80/	2.01	1.07		
7	mg kg	0.00	02.04	1.0	1.00	4 020200545	1 709000070	101.075	1.094	2.01	1.97		
2n	mg kg ⁻¹	89.96	93.91	123	124	1.839389545	1.798266976	101.375	101.528	106.3	102.5		
Zr	mg kg ⁻¹	227.79	228.8	222	222	116.874233	116.1002167	224.948	226.073	236.5	221.1	1	

Lab 0		LI20A	L120D	H41A	U/1B	424	LI42B	H42A	LI42D	H46A	LIAER	НИСА	HACR
Lab C	ode	H30A	пзов	H4 IA	H41B	H42A	H42D	H43A	H43B	H45A	H43B	П46А	П40Б
SiO2	g 100g-1	43.76		40.18	40.14	48.21		43.831	43.532	45.27	45.14		
TiO2	g 100g-1	2.79		2.7	2.68	2.744		2.845	2.843	2.91	2.89		
AI2O3	g 100g-1	12.79		12	12	13.73		12.536	12.546	12.8	12.68	12.95	
Fe2O3T	g 100g-1	11.39		11.2	11.15	12.02		11.509	11.818	10.27	10.3		
MgO	g 100g-1	10.83		9.92	10.59	10.93		10.759	10.677	11.01	11.14	10.5	
CaO	g 100g-1	11.74		11.06	11.16	12.03		11.672	11.72	11.63	11.57	12	
Na2O	g 100g-1	3 31		3.26	3 32	3 909		3.464	3 / 78	3.51	3.46	3.63	
1420	g 100g	1.0		1.60	1.64	1.050		1 901	1 700	1.70	1.77	0.00	
K20	g luug -	1.0		1.02	1.04	1.655		1.001	1.799	1.79	1.77		
P2O5	g 100g-1	0.74		0.72	0.75	0.7486		0.664	0.655	0.7	0.69		
Ag	mg kg ⁻¹											0.4	
As	mg kg ⁻¹	1.45		0.99	1.07					1.57	1.56		
Au	mg kg-1												
в	mg kg-1	5.89										6.13	
Ва	mg kg-1	711		663.73	668.21	733				690	681	694.26	
Be	ma ka-1	1 27											
Di	ma ka-1									0.024	0.024		
	ing kg									0.024	0.024	0.70	
	mg kg ·									0.13	0.17	0.79	
Ce	mg kg ⁻¹	107.3		101.54	102.18	109.2				109	108	106.44	
CI	mg kg ⁻¹												
Co	mg kg ⁻¹	50.98		45.79	45.84	52.94				52.5	52.3		
Cr	mg kg ⁻¹	482.2				571.1				508	501	539.9	
Cs	mg kg-1	0.718		0.64	0.64					0.74	0.73		
Cu	mg kg ⁻¹	59.23		55.32	54.7	66.28				63.4	63.1	73.53	
Dv	ma ka-1	5 14		5 31	5 46	5 14				55	5 44		
5,	ma ka-1	2 306		2.32	2.37	2.2				2.52	2.40		
E1	ing kg	2.300		2.32	2.37	2.3				2.32	2.49		
Eu	mg kg ·	2.707		2.0	2.04	2.723				2.79	2.77		
Ga	mg kg-1	18.36		42.55	33.66	18.99				19.1	19	19.19	
Gd	mg kg ⁻¹	7.35		7.31	7.47	7.299				7.93	7.9		
Ge	mg kg ⁻¹			1.86	1.66					1.45	1.47		
Hf	mg kg-1	4.975		5.06	5.16	5.059				5.06	5.01		
Но	mg kg-1	0.903		0.94	0.95	0.9241				0.95	0.95		
In	mg kg-1									0.07	0.07		
La	mg kg-1	56.16		55.73	56.63	57.02				58.9	58.2	56.47	
11	ma ka-1	6.11		5.09	5 15					6 35	6.29	7.08	
L	ma ka-1	0.222		0.00	0.10	0.2446				0.00	0.25	7.00	
Lu	mg kg	0.232		0.25	0.20	0.2440		4004	4000	0.23	0.23	4050 74	
Mn	mg kg ⁻¹	0.171		1437.36	1426.71	1448		1291	1283	1485	1477	1359.74	
Мо	mg kg ⁻¹									2.89	2.89		
Nb	mg kg ⁻¹	79.02		79.35	79.19	80.74				77.2	77.1		
Nd	mg kg ⁻¹	44.58		44.78	44.76	45.51				47.8	47.4	41.14	
Ni	mg kg-1	202.3		180.28	181.93	205.7				206	208	200.67	
Pb	mg kg-1	5.235		4.69	4.96	5.71				5	4.98	4.98	
Pr	mg kg-1	11.71		11.46	11.51	11.82				12	11.9	11.65	
Rh	ma ka-1	50.16		44 72	45 29	53.96				50.8	50.2		
Re	ma ka-1	00.10			10.20	00.00				00.0	00.2		
Re C	ing kg									_			
3	mg Kg ⁻ '									0.10	0.10		
50	mg kg ⁻¹					ļ	ļ	ļ		U.16	0.18		
Sc	mg kg ⁻¹	28.82		28.14	28.55					30	29.7		
Se	mg kg ⁻¹									0.42	0.4		
Sm	mg kg ⁻¹	8.575		8.4	8.63	8.729				9.08	8.97		
Sn	mg kg ⁻¹			1.29	1.3					1.62	1.64	6.23	
Sr	mg kg ⁻¹	789.6		778.97	775.93	834.1				853	849	815.2	
Та	ma ka-1	3 93		4 17	4.2	4 021				3 95	3.93		
ть	ma ka-1	0.035	-	0.00	1	0.08/1				1	0 00		
TD	ing kg	0.835		0.99		0.9041				1	0.99		
	mg Kg ⁻ '	0.70		0.00	0.00	0.007			<u> </u>		0.00	0.007501	
IN	mg kg ⁻¹	6.73		6.86	6.96	6.835				7.1	6.99	6.927594	
ті	mg kg ⁻¹									0.032	0.032		
Tm	mg kg ⁻¹	0.282		0.29	0.31	0.2829				0.3	0.29		
U	mg kg ⁻¹	1.758		1.61	1.6	1.776				1.72	1.68	1.72	
v	mg kg-1	274.5		284.77	282.95	287.5				287	284		
w	mg kg ⁻¹					1.187				1.15	1.12	1	
Y	ma ka-1	23.28		25 44	25 75	23.67				25.4	25.4	23.83	
Vh	ma ka-1	1 755		1 92	1 01	1 761				1.85	1.9/	20.00	
7.	ing Ng	1.700		1.03	1.91	1./01				CO.1	1.04	440.04	
2n	rng kg"	122.4	L			121.9				114	114	118.01	ļ
Zr	mg kg ⁻¹	195.8		221.17	220.2	211		1		222	221	1	

Lab Q		478	U 47B	LI49A		HEO A		451 A		4524	UE2D	4544	ЦЕЛВ
Lab Co		14.02	14 00	26 01	29.06	43.0	44	42.4	42.6	42.2	44.4	44.2	H34B
5102	g 100g-1	44.92	44.99	30.21	38.90	43.9	44	43.4	43.0	43.3	44.1	44.2	44.12
1102	g 100g-1	2.81	2.94	1.35	1.52	2.88	2.88	2.73	2.72	2.9	2.9	2.93	2.89
AI2O3	g 100g-1	13.24	13.23	13.35	14.24	12.9	13	12.5	12.5	12.9	13	13	12.94
Fe2O3T	g 100g ⁻¹	12.96	12.95	5.85	6.05	11.4	11.5	11.7	11.7	12.2	11.5	11.98	11.79
MgO	g 100g ⁻¹	10.78	10.76	13.64	14.12	10.7	10.6	11.8	11.3	10.8	10.9	10.53	10.75
CaO	g 100g ⁻¹	11.16	11.19	7.31	8.56	11.9	11.9	12.6	12.4	12.1	12	12.01	11.9
Na2O	g 100g ⁻¹	3.28	3.27	9.42	10.24	3.37	3.41	3.39	3.43	3.7	3.5	3.59	3.49
К2О	g 100g-1	1.8	1.8	1.49	1.38	1.81	1.8	1.77	1.79	1.9	1.9	1.81	1.75
P2O5	g 100g-1	0.66	0.67	0.45	0.39	0.7	0.7	0.624	0.638	0.7	0.7	0.67	0.69
Ag	mg kg ⁻¹							0.583	0.541				
As	mg kg ⁻¹												
Au	mg kg ⁻¹												
B	ma ka-1							13.2	9.04	74	5.9		
Ba	ma ka-1			1274.96	1265 52	694	676.8	668	676	721	715	699 92	709 73
Ba	ma ka-1			121 4.00	1200.02	004	070.0	3.61	5.09	721	110	1 75	1 91
De Di	ing kg							3.01	5.00			1.75	1.01
ві	mg kg												
Cd	mg kg ⁻¹												
Ce	mg kg ⁻¹					106.6	104.1	103	104	110	111	109.75	111.55
CI	mg kg ⁻¹			36150.85	37120.96								
Co	mg kg ⁻¹			17.36	16.13	52.1	51.5	53.4	54.5	49.4	48.8	49.38	49.44
Cr	mg kg-1			378.49	364.13	541.2	508.4	517	516	523	540	513.14	512.33
Cs	mg kg ⁻¹							0.687	0.74	0.73	0.78	0.68	0.69
Cu	mg kg ⁻¹			26.23	24.92	62.6	58.7	55.8	55.5	88.6	58.7	61.37	61.26
Dy	mg kg ⁻¹					5.4	5.2	5.47	5.38	5.57	5.59	5.65	5.67
Er	mg kg ⁻¹					2.4	2.3	2.4	2.38	2.47	2.55	2.53	2.62
Eu	mg kg ⁻¹					2.7	2.6	2.66	2.62	2.8	2.82	2.84	2.91
	ma ka-1			38.53	37.84		2.0	19.7	20.1	18.6	18.5	19.3	19.57
Cd	ma ka-1			00.00	07.04	7.6	7.2	7.57	7.62	8.02	7.9	7.9	7.97
Gu	ing kg					7.0	1.5	1.51	7.02	0.02	7.0	7.0	1.01
Ge	mg kg					5.4	5.4	5.05	5.04	5.04	5.0	5.00	5.47
Ht	mg kg ⁻¹					5.4	5.1	5.25	5.21	5.24	5.2	5.38	5.47
Но	mg kg ⁻¹					1	0.9	0.989	0.946	0.97	0.97	0.99	0.96
In	mg kg ⁻¹												
La	mg kg ⁻¹			30.59	31.48	58.2	55.1	56.6	56.4	57.6	57.7	59.24	59.12
Li	mg kg ⁻¹					6.5	6.5	6.16	6.83	8.02	6.48	6.13	6.18
Lu	mg kg ⁻¹					0.3	0.3	0.245	0.244	0.28	0.28	0.27	0.26
Mn	mg kg ⁻¹			507.58	499.91	1332	1356	1174	1176	1864	1813	1440.03	1442.11
Мо	mg kg ⁻¹											2.88	2.92
Nb	mg kg ⁻¹					81.8	80	76.1	75.9	82.09	83.01	82.33	82.4
Nd	ma ka-1					45.3	44.8	45.8	46	47.3	48.3	48.12	48.22
Ni	ma ka-1					211.1	201.7	227	221	100	101	106.70	105.22
Ph	ma ka-1			3 37	3.02	54	5 1	5 11	5.03	5.92	5.13	5.03	5.09
D.	mg kg			5.57	5.52	11.0	11.0	3.11	5.05	12.44	12.44	12.4	10.65
Pr	mg kg			40.05	44.0	50.4	11.0	47.0	40.0	12.44	12.44	12.4	12.33
RD	mg kg ⁻ '			12.05	11.0	50. I	49.5	47.8	48.3	48.4	50.2	49.80	48.40
Re	mg kg ⁻¹												
s	mg kg ⁻¹			607.72	591.43								
Sb	mg kg-1												
Sc	mg kg ⁻¹					27.8	27	26.7	26.2	30.2	30.3	29.91	29.78
Se	mg kg ⁻¹												i i
Sm	mg kg ⁻¹					9.1	8.7	8.58	8.31	8.9	8.8	9	9.03
Sn	mg kg ⁻¹												
Sr	mg kg-1			227.85	219.6	811.8	790.7	780	782	846	839	837.5	834.34
Та	mg kg ⁻¹					4.2	4.1	3.94	3.91	4.36	4.42	4.24	4.42
ть	mg kg ⁻¹					1	1	1.02	1.01	1.08	1.09	1.06	1.04
Те	mg kg-1												
ть	ma ka-1			3.85	<u>4</u> 12	71	6.0	6.85	6 77	7 1/	7 13	7 3/	7.21
 TI	ma ka-1			5.05	7.12	1.1	0.9	0.05	0.11	7.14	1.13	1.34	1.21
Tm	ma lumi					0.2	0.2	0.216	0.200	0.2	0.24	0.22	0.22
[i m	mg kg ⁻¹				L	0.3	0.3	0.316	0.288	0.3	0.31	0.33	0.33
U	mg kg ⁻¹				40.15	1./	1./	1.62	1.64	1.72	1./1	1./1	1.83
v	mg kg-1			15.64	16.12	290.9	285.5	264	266	266	270	276.41	273.34
w	mg kg-1												
Y	mg kg-1			6.3	5.9	24.9	24.5	23.8	23.7	25.9	25.9	26.1	26.24
Yb	mg kg-1					1.9	1.9	1.94	1.91	1.86	1.82	1.89	1.91
Zn	mg kg-1			39.52	37.84	144.3	138.2	106	111	106	105	102.61	101.77
Zr	mg kg-1			399.43	386.45	219.5	212.8	209	207	224	227	233.09	228.97

Lah C	ode	H55A	H55B	H56A	H56B	H57A	H57B	H59A	H59B	H61A	H61B	H64A	H64B
Lab Co	a 100a-1	44.49	44.11	HIJOA	HJUD	13.249	1137.0	43.00	43.67	13.79	norb	1104A	11048
3102	g 100g	2.94	44.11 2.97			43.240		43.99	43.07	43.70			
1102	g 100g	2.04	2.07			2.091		2.07	2.00	3.02			
AI203	g 100g ·	12.99	12.94			12.771		13.03	12.89	12.32			
Fe2031	g 100g	11.34	10.96			10.51		10.62	10.57	13.00			
MgO	g 100g -	11.03	10.86			10.51		10.62	10.57	11.10			
CaO	g 100g-1	11.58	11.65			11.753		11.93	11.82	11.25			
Na2O	g 100g-1	3.44	3.4			3.428		3.4	3.39	2.94			
K20	g 100g-1	1.7	1.72			1.736		1.78	1.78	1.98			
P2O5	g 100g-1	0.68	0.68			0.718		0.71	0.71	0.37			
Ag	mg kg ⁻¹												
As	mg kg ⁻¹											2.05	1.97
Au	mg kg ⁻¹												
В	mg kg ⁻¹									7.8		4.33	3.39
Ва	mg kg ⁻¹	723.31	725.54	770.4				713.11	708.44	682		691	711
Be	mg kg ⁻¹							2.79	2.42			1.53	1.53
Bi	mg kg ⁻¹												
Cd	mg kg ⁻¹								3.01				
Ce	mg kg ⁻¹	110.96	111.26	115.75				111.61	112.68	103		105	110
CI	mg kg ⁻¹												
Co	mg kg ⁻¹	51.68	51.98					48.64	47.85	48		49.1	50.9
Cr	mg kg ⁻¹	487.76	487.83					516.45	517.66	453		479	494
Cs	mg kg ⁻¹			0.73				0.83	0.82				
Cu	mg kg ⁻¹	62.03	62.47					65.08	65.72			56.6	55.4
Dy	mg kg ⁻¹	5.25	5.55	5.84				5.88	5.67	4.7		5.25	5.2
Er	mg kg ⁻¹	2.36	2.41	2.58				2.75	2.75	2		2.33	2.29
Eu	mg kg ⁻¹	2.75	2.79	3.13				2.9	2.79	2.5		2.65	2.69
Ga	mg kg ⁻¹			18.74				19.19	19.49	17		20.1	19.7
Gd	mg kg ⁻¹	7.44	7.61	8.27				7.9	7.85	6.8		7.44	7.36
Ge	mg kg ⁻¹							1.94	1.54			1.38	1.48
Hf	mg kg-1	5.18	5.38	5.48				5.24	4.99	4.6		5.23	5.19
Но	mg kg-1	0.95	0.98	1.01				1	1.02	0.8		0.92	0.92
In	mg kg-1			0.09									
La	mg kg ⁻¹	58.16	59.1	63.17				59.06	59.53	53		55.9	57.8
Li	mg kg ⁻¹	6.37	6.62					6.05	5.91	5.7		6.36	5.96
Lu	mg kg-1	0.26	0.28	0.29				0.36	0.28	0.2		0.25	0.25
Mn	mg kg ⁻¹	1388.57	1391.53			831.2		1382.97	1380.65	1581		1286	1302
Мо	mg kg ⁻¹			2.65				3.04	2.59			2.62	2.62
Nb	mg kg ⁻¹	80.09	79.89	88.82						77		77.4	77.9
Nd	mg kg ⁻¹	46.83	47.7	48.81						40		44.7	45.7
Ni	mg kg-1	203.21	205.09					187.5	191.44	193		219	235
Pb	mg kg ⁻¹	4.39	4.29					5.27	5.04	5		3.62	4.39
Pr	mg kg-1	12.27	12.31	12.21						10.7		11.6	12
Rb	mg kg-1	48.47	48.94							48		44.4	45.3
Re	mg kg-1												
s	mg kg-1												
Sb	mg kg-1												
Sc	mg kg-1	28.44	28.97							30		29	28.5
Se	mg kg-1												
Sm	mg kg-1	9.05	9.06	9.07						7.6		8.57	8.71
Sn	mg kg ⁻¹												
Sr	mg kg ⁻¹	831.73	834.32					840.6	829.07	741		791	791
Та	mg kg ⁻¹	4.15	4.23							3.6		4.07	4.08
ть	mg kg-1	0,96	1.04	1.08						0.8		0,98	0,97
Те	mg kg-1												
Th	mg ka-1	6.88	7.24							64		6,99	7.02
т.	mg ka ⁻¹	0.00								0.7		0.00	
т	ma ka-1	0.29	0.31	0.34						0.2		0.29	0.29
	9 Ng ma ka-1	1.8	1 77	0.04				1 79	1.8	1.6		1 74	1 77
v	ma ka-1	278.36	278 78					265.08	262.88	27/		275	276
w	ma ka-1	210.00	210.10	1.07				200.00	202.00	217		1.07	11
v	ma ka-1	23.70	24.67	27.55				27.51	27.12	21		23.0	23.6
yh	ma ka-1	1.05	24.07	21.00				21.01	21.12	1 5		2J.0	1 0
7-	mg kg 1	1.00	2	2.01				05.67	00.44	1.0		1.0	1.0
20	mg Kg ⁻ '	010.00	010 51	000.40				95.67	90.44	137		40/	410
∠r	mg kg ⁻¹	212.09	219.54	229.16			1	235.87	232.06	195	1	213	211

Table 2 - G-Probe 27 Designated values and statistical summary for Basanite	BOOS-1G Glass.

	Designated Value	Uncertainty of designated value	Horwitz Quality	Horwitz Target Precision	Uncertainty/ Target Precision	Number of reported results	Robust Mean of results	Robust SD of results	Median of results	Status of designated value	Type of designated value
	X _{pt}	u(<i>x_{pt}</i>)	k x 0.01	σ _{pt}	u(x _{pt})/σ _{pt}	n					
	g 100g ⁻¹	g 100g-1		g 100g-1			g 100g-1	g 100g ⁻¹	g 100g-1		
SiO2	43.82	0.1332	1	0.4961	0.2684	36	43.92	1.037	43.82	Assigned	Median
TiO2	2.865	0.02291	1	0.04891	0.4685	37	2.838	0.1344	2.865	Assigned	Median
Al2O3	12.78	0.06042	1	0.1741	0.347	37	12.78	0.3675	12.79	Assigned	Robust Mean
Fe2O3T	11.55	0.09808	1	0.1599	0.6135	37	11.55	0.5966	11.63	Provisional	Robust Mean
MgO	10.77	0.07665	1	0.1506	0.509	36	10.69	0.407	10.77	Assigned	Median
CaO	11.78	0.06496	1	0.1625	0.3996	35	11.78	0.3843	11.78	Assigned	Robust Mean
Na2O	3.415	0.03871	1	0.05677	0.6819	36	3.401	0.1792	3.415	Assigned	Median
K20	1.78	0.01382	1	0.03264	0.4234	35	1.700	0.09288	1.78	Assigned	Median
P205	0.092	0.0142	I	0.01463	0.9707	34	0.0724	0.07838	0.0625	Provisional	Mode
Aq	0.368	0.0255	1	<u>така</u> 0.03422	0.7453	12	тлд кд⁻¹ 0.4013	тлд кд 0.1041	0.3805	Provisional	Mode
As	1.456	0.08199	1	0.1101	0.745	16	1.472	0.3017	1.456	Provisional	Median
Ва	709.7	4.878	1	21.13	0.2308	35	709.7	28.86	710.8	Assigned	Robust Mean
Be	1.469	0.04097	1	0.1109	0.3695	20	1.469	0.1832	1.475	Assigned	Robust Mean
Bi	0.02315	0.00105	1	0.003264	0.3217	10	0.02503	0.006372	0.024	Provisional	Mode
Ce	109.1	0.84	1	4.306	0.1951	32	108.6	4.427	109.1	Assigned	Median
Co	50.21	0.4013	1	2.227	0.1802	31	50.21	2.234	50.09	Assigned	Robust Mean
Cr	513.4	8.01	1	16.05	0.499	32	508.1	36.94	513.4	Assigned	Median
Cs	0.6972	0.00881	1	0.05887	0.1496	24	0.6972	0.04316	0.6955	Assigned	Robust Mean
Cu	60.93	1.188	1	2.625	0.4525	30	60.63	5.233	60.93	Assigned	Median
Dy	5.421	0.05339	1	0.3362	0.1588	31	5.421	0.2973	5.4	Assigned	Robust Mean
Er	2.367	0.02902	1	0.1663	0.1745	31	2.395	0.1478	2.367	Assigned	Median
Eu	2.777	0.02645	1	0.1905	0.1389	31	2.763	0.1214	2.777	Assigned	Median
Ga	19.1	0.1836	1	0.98	0.1873	31	19.33	1.15	19.1	Assigned	Median
Gd	7.649	0.07447	1	0.4504	0.1653	31	7.649	0.4146	7.567	Assigned	Robust Mean
Ge	1.455	0.0358	1	0.11	0.3255	15	1.5/2	0.2357	1.515	Provisional	Mode
HT	5.2	0.04172	1	0.3245	0.1285	31	5.141	0.2108	5.2	Assigned	Median Rehust Meen
In	0.947	0.007708	1	0.07037	0.1017	14	0.947	0.04325	0.95	Provisional	Median
 a	57 48	0.328	1	2 499	0.1313	33	57 48	1 884	57.42	Assigned	Robust Mean
Li	6.233	0.06053	1	0.3785	0.1599	30	6.266	0.2961	6.233	Assigned	Median
Lu	0.25	0.004005	1	0.02463	0.1626	31	0.2544	0.02152	0.25	Assigned	Median
Mn	1384	14.67	1	37.27	0.3937	37	1375	89.3	1384	Assigned	Median
Мо	2.815	0.03664	1	0.1927	0.1902	22	2.763	0.1543	2.815	Assigned	Median
Nb	79.43	0.5964	1	3.289	0.1813	30	79.43	3.266	79.49	Assigned	Robust Mean
Nd	46.53	0.4572	1	2.088	0.219	31	46.19	2.129	46.53	Assigned	Median
Ni	202	2.615	1	7.267	0.3599	32	202.5	12.73	202	Assigned	Median
Pb	5.044	0.06384	1	0.3162	0.2019	32	5.044	0.3611	5.051	Assigned	Robust Mean
Pr	11.92	0.08459	1	0.6567	0.1288	30	11.92	0.4633	11.89	Assigned	Robust Mean
Rb	48.7	0.4856	1	2.171	0.2237	31	48.47	2.953	48.7	Assigned	Median
Sb	0.1495	0.006169	1	0.01592	0.3876	12	0.1503	0.02235	0.1495	Provisional	Median
SC	29.27	0.3438	1	1.409	0.2441	27	29.34	1.853	29.27	Assigned	Median
Sn	1 803	0.108	1	0.3110	0.2109	20	1 982	0.4405	1 927	Provisional	Mode
Sr	831.2	5.51	1	24.17	0.228	34	814.5	40.81	825.5	Provisional	Mode
Та	4.072	0.0521	1	0.2636	0.1976	29	4.072	0.2806	4.07	Assigned	Robust Mean
Tb	0.9964	0.009671	1	0.07974	0.1213	30	0.9964	0.05297	1	Assigned	Robust Mean
Th	6.922	0.06384	1	0.4138	0.1543	31	6.922	0.3554	6.935	Assigned	Robust Mean
ті	0.032	0.001858	1	0.004297	0.4325	9	0.03111	0.005755	0.032	Provisional	Median
Tm	0.2946	0.003863	1	0.02833	0.1364	30	0.2946	0.02116	0.2975	Assigned	Robust Mean
U	1.745	0.01669	1	0.1284	0.13	31	1.73	0.08141	1.745	Assigned	Median
v	277.4	2.075	1	9.514	0.2181	32	277.4	11.74	276.4	Assigned	Robust Mean
w	1.108	0.01772	1	0.08726	0.2031	19	1.108	0.07726	1.108	Assigned	Robust Mean
Y	24.44	0.334	1	1.208	0.2764	33	24.44	1.919	24.45	Assigned	Robust Mean
Yb	1.855	0.02951	1	0.1352	0.2183	30	1.847	0.1243	1.855	Assigned	Median
Zn	111.5	2.908	1	4.385	0.6631	30	111.5	15.93	112	Provisional	Robust Mean
Zr	221.5	3.396	1	7.86	0.4321	33	219.2	16.63	221.5	Assigned	Median

Table 3 - G-Pr	robe 27 Z-score	s for Basanite,	BOOS-1G G	ass. 06/09/2023
----------------	-----------------	-----------------	-----------	-----------------

Lab Code	H1	Н3	H5	H6	H7	H8	Н9	H11	H13	H14	H16	H17	H18
SiO2: 1	1.68	-1.95	3.56	0.66	-0.03	-0.78	0.60	-0.39	-6.24	0.54	*	4.11	-0.84
TiO2: 1	2.35	-0.82	-6.15	1.84	0.20	-13.90	-41.28	2.48	-1.35	-0.71	-3.60	-3.13	-9.10
AI2O3: 1	-0.95	-6.17	0.39	-2.64	0.09	-2.64	-0.20	0.52	-4.11	0.16	3.11	1.50	-1.52
Fe2O3T: 1	2.15	-5.64	-1.36	1.58	0.21	-4.32	-7.01	2.31	-3.14	0.32	-0.63	0.52	-33.47
MgO: 1	2.79	-19.11	-3.14	0.53	0.05	2.04	-26.97	1.58	*	0.29	-7.30	-5.41	-15.52
CaO: 1	-1.18	13.66	-1.63	-2.40	-0.03	-2.49	1.84	1.60	*	-0.32	-2.04	-0.82	1.35
Na2O: 1	-1.64	*	-3.31	-3.87	0.26	-5.37	-21.67	2.37	*	0.83	-3.49	4.40	-0.97
K2O: 1	-0.43	-1.99	0.21	-2.10	0.31	-0.77	-29.06	2.19	*	-0.54	-0.31	7.01	-6.74
P2O5: 1	*	357.73	-0.20	-6.39	0.48	-0.48	7.49	1.33	*	-0.82	-8.33	-3.11	-11.07
Ag: 1	0.23	*	*	*	*	4.88	*	-1.44	*	*	0.57	5.43	-0.23
As: 1	-2.15	6.03	-0.24	*	*	2.35	*	0.23	*	*	*	3.46	-1.05
Ba: 1	0.22	1.20	-2.73	*	*	-0.86	7.04	0.14	0.25	2.64	-0.07	0.57	-4.15
Be: 1	-0.52	*	-0.35	*	*	0.87	*	0.52	0.82	*	-0.99	-0.67	-1.97
Bi: 1	1.49	*	-0.35	*	*	0.26	*	-0.17	*	*	*	*	5.16
Ce: 1	0.01	2.19	-1.64	*	*	-0.71	*	0.66	1.17	*	-0.64	-0.01	-2.36
Co: 1	-0.46	-0.88	-0.09	*	*	0.22	*	0.49	0.12	*	-0.94	1.14	-1.12
Cr: 1	4.39	1.16	-2.20	*	*	0.76	-27.53	-0.88	-9.94	*	-1.45	-0.82	-3.51
Cs: 1	-0.41	-1.23	0.05	*	*	-0.97	*	0.34	-0.33	*	-0.72	0.44	-0.29
Cu: 1	-1.77	*	0.10	*	*	-2.90	*	0.83	-2.49	*	-1.26	1.41	-1.19
Dy: 1	-0.36	1.01	-0.99	*	*	-0.45	*	0.90	0.14	*	-0.49	-0.65	-1.55
Er: 1	-0.10	1.13	-0.40	*	*	-0.52	*	1.24	-0.34	*	-0.72	0.00	-1.85
Eu: 1	0.43	-0.09	-0.88	*	*	-0.20	*	0.42	0.13	*	-0.64	-0.31	-0.83
Ga: 1	-0.51	34.64	76.83	*	*	-0.51	*	0.38	17.47	*	-1.53	0.54	-0.62
Gd: 1	-0.52	1.88	-1.06	*	*	-0.93	*	1.14	-0.41	*	-1.05	-0.18	-0.51
Ge: 1	-1.40	0.55	23.32	*		40.91	*	0.92	*	*	*	1.42	3.23
Hf: 1	-0.46	0.45	-1.23	*	*	-1.02	*	0.38	-0.77	*	0.06	-0.37	-1.66
Ho: 1	-0.30	0.30	-0.62	, t	î.	-0.55	÷	0.44	-0.45	÷	-0.72	-0.27	-0.75
In: 1	-0.21	^ 4 40	^ 	*	*	-0.75	*	-0.43	0.00	*	0.35	19.78	1.07
La: 1	0.12	1.13	-1.11	*	*	-0.39	*	0.00	0.60	*	-0.54	-0.22	-0.83
	-0.10	0.35	-0.43	*	*	-0.59	*	0.31	-0.59	*	-0.23	1.12	0.10
Lu: 1 Mp: 1	0.00	0.41	-0.41	*	0.10	-0.20	2.26	1.00	-0.41	0.72	-0.95	-0.25	-0.01
Mo: 1	-0.03	-2.41	0.07	*	-0.19	-0.70	-5.20	0.56	-0.95	-0.72	-1.00	0.59	-3.30
Nb: 1	-0.02	-0.28	-1.62	*	*	-0.70	*	0.50	0.00	*	-0.22	-0.26	-2.00
Nd: 1	-0.00	0.20	-1.02	*	*	-0.33	*	1.06	0.21	*	-0.07	-0.20	-4.51
Ni-1	-0.05	2.00	-0.55	*	*	1 52	16 66	0.68	-0.49	*	-1.23	2.08	-1.00
Ph: 1	-1 02	-1.58	-0.68	*	*	-0.22	*	-0.01	-1.31	*	-0.58	1 17	0.97
Pr: 1	-0.60	0.12	-0.95	*	*	-0.49	*	0.62	0.88	*	-0.58	-0.06	-2.03
Rb: 1	-0.78	0.04	-0.32	*	*	-1.75	30.08	0.53	-2.11	*	-0.77	2.26	0.46
Sb: 1	-1.41	-5.62	-0.03	*	*	2.23	*	-0.38	-1.04	*	*	*	0.03
Sc: 1	-0.78	2.61	-1.12	*	*	7.51	*	0.38	-0.08	*	-0.68	3.28	-1.46
Sm: 1	-1.25	0.88	-0.76	*	*	-0.39	*	0.63	0.85	*	-0.93	-0.76	-1.23
Sn: 1	-2.22	-3.21	-0.25	*	*	0.28	*	1.34	-0.00	*	1.22	1.75	14.37
Sr: 1	0.03	-0.26	-5.76	*	*	-1.04	3.92	1.91	-1.76	-2.41	-1.73	-0.53	-3.90
Ta: 1	2.03	-1.75	-0.96	*	*	-0.99	*	1.00	-0.01	*	-0.36	-0.35	-3.69
Tb: 1	-0.51	0.05	-0.71	*	*	-0.58	*	0.56	0.17	*	-1.08	-0.36	-0.58
Th: 1	0.38	0.26	-0.39	*	*	-0.56	*	0.82	-0.56	*	-0.43	-0.26	-1.21
ТІ: 1	-0.70	*	*	*	*	0.81	*	0.23	*	*	*	*	-0.47
Tm: 1	-0.02	2.66	-0.55	*	*	-0.46	*	0.49	-0.52	*	-0.41	-0.58	-1.22
U: 1	0.47	2.38	-0.74	*	*	-0.23	*	0.15	-0.91	*	0.18	0.39	-0.82
V: 1	1.89	-0.51	-1.10	*	*	-0.30	21.98	0.65	0.50	*	-0.23	0.38	-2.72
W: 1	-1.47	-4.39	-0.32	*	*	-0.49	*	0.38	-0.50	*	*	0.51	-0.09
Y: 1	0.73	0.42	-1.02	*	*	-0.65	*	1.40	-0.95	*	-1.16	-0.93	-1.98
Yb: 1	0.07	-2.29	-0.78	*	*	-0.70	*	0.59	0.72	*	-1.21	-1.07	-0.78
Zn: 1	-3.29	1.26	4.09	*	*	-1.36	*	-4.61	-0.22	*	2.27	1.67	-2.34
Zr: 1	1.37	3.50	-2.23	*	*	-0.64	19.91	0.85	-1.87	*	-1.63	-1.72	-2.90

Tahlo	3 - G-Proha	27 7-ecor	os for Resent	BOOS-16 Glass	06/09/2023
Table	3 - 0-1 1000	21 2-3001		, DOOD-10 Olass	

Lab Code	H20	H21	H25	H26	H27	H29	H30	H33	H34	H36	H37	H38	H41
SiO2: 1	-2.30	-0.82	*	*	5.81	0.44	6.29	0.94	-0.64	0.89	-9.59	-0.12	-7.37
TiO2: 1	58.57	-0.98	*	*	0.72	1.23	1.74	-1.37	0.02	1.74	10.94	-1.53	-3.58
AI2O3: 1	-1.08	0.49	*	*	-2.15	0.26	*	-0.55	-0.70	2.67	7.90	0.09	-4.45
Fe2O3T: 1	3.28	-1.38	*	*	-2.82	1.68	4.59	3.18	1.91	-4.35	9.19	-1.01	-2.35
MgO: 1	-0.02	-3.17	*	*	0.22	-0.35	*	-3.12	-0.38	0.72	2.21	0.42	-3.40
CaO: 1	6.04	0.43	*	*	-2.03	2.95	*	*	0.48	0.12	10.64	-0.25	-4.12
Na2O: 1	-2.29	0.37	*	*	-2.03	-4.49	3.70	-1.04	0.85	2.55	0.26	-1.85	-2.20
K2O: 1	-18.44	-0.64	*	*	3.68	-4.14	*	-0.52	0.38	-2.45	3.06	0.61	-4.60
P2O5: 1	-2.35	0.96	*	*	-6.29	-23.04	5.33	*	-1.57	4.92	-15.18	3.28	2.94
Ag: 1	*	*	-1.84	*	*	-2.57	0.50	*	-0.32	*	*	*	*
As: 1	0.05	*	0.31	*	*	-2.96	*	-3.05	-0.20	*	*	-0.05	-3.87
Ba: 1	2.35	-0.32	-1.36	0.14	*	-1.01	0.54	1.06	-0.06	-0.08	*	0.06	-2.07
Be: 1	-1.45	-1.24	-2.43	0.64	*	1.27	*	-1.15	0.46	*	*	-1.79	*
Bi: 1	*	*	-2.19	*	*	-0.97	*	3.64	0.41	*	*	*	*
Ce: 1	2.45	-0.23	-1.64	0.27	*	0.29	0.49	-0.24	0.58	0.27	*	-0.41	-1.68
Co: 1	2.79	-0.05	-0.41	-1.22	*	0.41	2.02	0.38	0.30	-0.59	*	0.35	-1.97
Cr: 1	2.27	0.04	-1.71	2.35	*	1.25	0.35	2.27	1.05	-0.74	*	-1.94	*
Cs: 1	0.84	-0.05	-1.09	*	*	-0.04	0.81	-0.21	-0.02	*	*	0.35	-0.97
Cu: 1	3.15	0.44	-2.94	0.72	*	-0.34	1.97	-0.30	0.67	-0.30	*	-0.65	-2.25
Dy: 1	1.57	0.17	-2.06	0.23	*	0.66	-0.12	-0.20	0.61	1.42	*	-0.84	-0.11
Er: 1	1.76	0.29	-2.03	-0.07	*	-0.52	0.32	0.45	0.89	0.95	*	-0.37	-0.13
Eu: 1	1.16	0.04	-1.35	0.41	*	0.59	0.30	0.00	0.29	0.78	*	-0.37	-0.83
Ga: 1	1.19	-0.20	-1.53	0.90	*	-0.03	1.22	-0.56	-0.28	0.00	*	-0.76	19.39
Gd: 1	2.03	0.42	-2.37	0.78	*	0.79	-0.35	0.68	0.67	0.48	*	-0.66	-0.58
Ge: 1	*	-0.11	-0.05	*	*	-1.95	*	-0.37	*	*	*	*	2.77
Hf: 1	1.38	0.08	-2.37	0.00	*	0.39	-0.71	-0.23	0.18	0.35	*	-0.69	-0.28
Ho: 1	1.15	0.29	-1.57	0.30	*	0.63	0.17	-0.04	0.34	0.43	*	-0.58	-0.03
In: 1	×	*	-0.53	*		-0.53	2.14	-0.57	0.21	0.32	*	*	*
La: 1	2.54	-0.02	-1.43	0.17		0.73	0.60	0.05	0.55	-0.09	+	-0.53	-0.52
	1.80	-0.46	-0.77	0.23	- +	0.38	1.25	-0.07	0.07	-0.48	- +	-0.32	-2.94
Lu: 1	0.99	0.04	-1.50	0.41	*	0.20	-0.41	-0.09	0.49	1.22	*	-0.73	0.20
Mo: 1	4.71	0.19	0.10	-0.07	*	1.19	1.99	2.10	0.00	1 1 2	*	-37.13	1.29
NID: 1	1.14	0.09	-0.90	-1.27	*	0.00	-0.52	0.15	0.52	-1.12	*	0.12	0.05
Nd: 1	2.65	0.00	-1.00	0.30	*	0.22	0.20	-0.41	0.50	0.44	*	-0.13	-0.03
Ni- 1	2.00	-0.96	-1.09	-1 28	*	-0.20	1.86	0.22	0.00	-2.03	*	-0.95	-0.04
Dh: 1	2.52	0.30	0.62	-4.20	*	40.26	0.87	0.05	0.20	-0.79	*	0.00	-2.07
Dr: 1	1.64	-0.02	-0.95	-0. 4 3 0.29	*	40.20 0.40	0.07	-0.18	0.10	1 23	*	-0.32	-0.03
Rh: 1	1.89	0.00	-1.57	-0.35	*	-1.58	1.68	-0.55	0.00	-0.44	*	0.67	-1 70
Sh: 1	*	*	-0.41	*	*	0.03	*	2 10	0.35	*	*	*	*
Sc. 1	1.89	0.43	-2.18	-0.75	*	3.26	0.08	0.23	0.00	*	*	-0.32	-0.66
Sm: 1	1.81	0.20	-1.43	1.09	*	0.58	0.06	-0.02	0.46	1.00	*	-0.62	-0.73
Sn: 1	4.85	*	0.66	2.14	*	-2.68	5.01	-0.98	3.30	9.26	*	*	-3.85
Sr: 1	2.86	0.12	-2.65	0.30	*	-0.10	-0.21	0.98	0.23	0.65	*	-1.72	-2.22
Ta: 1	0.97	0.32	-1.45	1.51	*	-0.06	0.05	-0.27	0.60	1.83	*	-0.54	0.43
Tb: 1	1.19	0.16	-1.40	0.61	*	0.55	0.11	-0.18	0.40	0.55	*	-0.77	-0.02
Th: 1	2.88	0.22	-1.65	1.40	*	-1.29	0.03	0.69	0.88	1.28	*	-0.46	-0.03
TI: 1	*	*	-1.86	*	*	-2.79	0.70	*	1.63	*	*	*	*
Tm: 1	0.73	0.26	-1.51	0.37	*	0.54	-0.16	-9.01	0.37	0.90	*	-0.45	0.19
U: 1	0.87	-0.57	-0.43	0.00	*	0.55	0.66	-11.33	0.11	-0.08	*	0.10	-1.09
V: 1	3.35	0.42	-0.67	-0.02	*	1.80	0.96	-28.97	0.24	-1.19	*	-0.30	0.68
W: 1	1.15	*	0.48	*	*	0.14	0.88	3426.37	0.00	-1.35	*	*	*
Y: 1	2.72	0.61	-2.84	1.07	*	0.80	0.01	-19.28	1.14	1.71	*	-0.96	0.96
Yb: 1	1.68	-0.11	-2.48	0.37	*	0.59	-0.11	172.73	0.37	1.00	*	-0.74	0.11
Zn: 1	3.93	0.44	3.09	-3.33	*	-4.45	2.75	-25.00	-2.28	-1.61	*	2.50	*
Zr: 1	2.50	0.08	-4.26	0.76	*	0.86	0.06	-13.36	0.51	0.93	*	-3.27	-0.10

Table 3 - G-Probe	27 7-scores	for Basanite	BOOS-1G Glass	06/09/2023
	21 2-300103	Tor Dasarine,	D000-10 0ia33.	00/03/2023

Lab Code	H42	H43	H45	H46	H47	H48	H50	H51	H53	H54	H55	H56	H57
SiO2: 1	8.85	-0.27	2.80	*	2.29	-12.56	0.27	-0.64	-0.24	0.69	0.96	*	-1.15
TiO2: 1	-2.47	-0.43	0.72	*	0.20	-29.24	0.31	-2.86	0.72	0.92	-0.20	*	0.53
AI2O3: 1	5.48	-1.34	-0.20	1.00	2.64	5.86	1.00	-1.58	1.00	1.12	1.09	*	-0.02
Fe2O3T: 1	2.93	0.70	-7.92	*	8.78	-35.04	-0.63	0.93	1.87	2.09	0.06	*	0.99
MgO: 1	1.08	-0.33	2.04	-1.77	0.02	20.67	-0.78	5.20	0.55	-0.84	1.18	*	-1.71
CaO: 1	1.54	-0.52	-1.11	1.35	-3.72	-23.66	0.74	4.43	1.66	1.08	-1.02	*	-0.17
Na2O: 1	8.70	0.99	1.23	3.79	-2.47	112.99	-0.44	-0.09	3.26	2.20	0.09	*	0.23
К20: 1	2.24	0.61	0.00	*	0.61	-10.57	0.77	0.00	3.68	0.00	-2.14	*	-1.35
P2O5: 1	3.87	-2.22	0.21	*	-1.85	-18.59	0.55	-4.17	0.55	-0.82	-0.82	*	1.78
Aq: 1	*	*	*	0.93	*	*	*	5.67	*	*	*	*	*
As: 1	*	*	0.99	*	*	*	*	*	*	*	*	*	*
Ba: 1	1.10	*	-1.14	-0.73	*	26.52	-1.15	-1.78	0.39	-0.23	0.70	2.87	*
Be: 1	*	*	*	*	*	*	*	25.94	*	2 81	*	*	*
Bi 1	*	*	0.26	*	*	*	*	*	*	*	*	*	*
Co. 1	0.03	*	-0.13	-0.61	*	*	-0.87	-1 29	0.33	0.37	0 47	1 55	*
Co: 1	1 23	*	0.10	*	*	-15.02	0.72	1.68	-0.50	-0.36	0.73	*	*
Cr: 1	3.60	*	-0.55	1 65	*	-8.85	0.72	0.20	-0.00	-0.00	-1 50	*	*
Ce: 1	*	*	0.64	*	*	*	*	0.20	0.08	-0.21	*	0.56	*
	2.04	*	0.04	4 80	*	-13 /6	-0.10	-2.01	1 85	-0.21	0.50	*	*
	0.94	*	0.09	4.00	*	-13.40	-0.10	-2.01	4.05	0.15	0.00	1.24	*
	-0.64	*	0.14	*	*	*	-0.30	0.01	0.47	1.25	-0.00	1.24	*
	-0.40	*	0.03	*	*	*	-0.10	0.14	0.00	0.51	0.11	1.20	*
	-0.20	*	0.01	0.00	*	10.47	-0.07	-0.72	0.17	0.31	-0.04	1.00	*
Ga: 1	-0.11	*	-0.05	0.09	*	19.47	0.44	0.02	-0.56	0.34	0.00	-0.37	*
Ga: 1	-0.78	*	0.59	*	*	*	-0.44	-0.12	0.58	0.41	-0.28	1.38	*
Ge: 1	0.40		0.05		+	+	0.45	0.00	0.00	0.00	0.05	0.00	•
HT: 1	-0.43	- +	-0.51	- +	- +	- +	0.15	0.09	0.06	0.69	0.25	0.86	- +
Ho: 1	-0.30	- -	0.04	- -	- -		0.04	0.27	0.30	0.37	0.24	0.82	- -
In: 1	- - 10	- -	-1.07	- - 10	- -	10 50	- 	- 	0.07	- - -	° • • • •	1.07	- -
La: 1	-0.18		0.43	-0.40	^ _	-10.58	-0.33	-0.39	0.07	0.68	0.46	2.28	^ _
Li: 1	•		0.23	2.24		^	0.71	0.69	2.69	-0.21	0.69		^
Lu: 1	-0.22	*	0.00	*	*	*	2.03	-0.22	1.22	0.61	0.81	1.62	*
Mn: 1	1.72	-2.60	2.60	-0.65	*	-23.62	-1.07	-5.61	12.19	1.53	0.16	*	-14.83
Mo: 1	*		0.39		*	*	*	*	*	0.44	*	-0.86	*
Nb: 1	0.40		-0.69	*	*	*	0.45	-1.04	0.95	0.89	0.17	2.85	
Nd: 1	-0.49	*	0.51	-2.58	*	*	-0.71	-0.30	0.61	0.79	0.35	1.09	*
Ni: 1	0.51	*	0.69	-0.18	*	*	0.61	3.03	-0.96	-0.80	0.30	*	*
Pb: 1	2.11	*	-0.17	-0.20	*	-4.42	0.65	0.08	1.52	0.05	-2.23	*	*
Pr: 1	-0.16	*	0.04	-0.42	*	*	-0.11	*	0.79	0.84	0.56	0.44	*
Rb: 1	2.42	*	0.83	*	*	-16.94	0.50	-0.30	0.27	0.21	0.00	*	*
Sb: 1	*	*	1.29	*	*	*	*	*	*	*	*	*	*
Sc: 1	*	*	0.41	*	*	*	-1.33	-2.00	0.69	0.41	-0.40	*	*
Sm: 1	-0.32	*	0.26	*	*	*	0.02	-0.87	-0.08	0.24	0.32	0.35	*
Sn: 1	*	*	-1.31	33.54	*	*	*	*	*	*	*	*	*
Sr: 1	0.12	*	0.82	-0.66	*	-25.13	-1.24	-2.08	0.47	0.20	0.08	*	*
Ta: 1	-0.19	*	-0.50	*	*	*	0.30	-0.56	1.21	0.98	0.45	*	*
Tb: 1	-0.15	*	-0.02	*	*	*	0.05	0.23	1.11	0.67	0.05	1.05	*
Th: 1	-0.21	*	0.30	0.01	*	-7.10	0.19	-0.27	0.51	0.85	0.33	*	*
TI: 1	*	*	0.00	*	*	*	*	*	*	*	*	*	*
Tm: 1	-0.41	*	0.01	*	*	*	0.19	0.26	0.37	1.25	0.19	1.60	*
U: 1	0.24	*	-0.35	-0.19	*	*	-0.35	-0.90	-0.23	0.19	0.31	*	*
V: 1	1.07	*	0.85	*	*	-27.48	1.14	-1.30	-0.98	-0.26	0.13	*	*
W: 1	0.91	*	0.31	*	*	*	*	*	*	*	*	-0.43	*
Y: 1	-0.63	*	0.80	-0.50	*	-15.18	0.22	-0.57	1.21	1.43	-0.17	2.58	*
Yb: 1	-0.70	*	-0.07	*	*	*	0.33	0.52	-0.11	0.33	0.52	1.15	*
Zn: 1	2.38	*	0.58	1.49	*	-16.59	6.79	-0.67	-1.36	-2.11	*	*	*
Zr: 1	-1.34	*	0.00	*	*	21.81	-0.68	-1.72	0.51	1.21	-0.72	0.97	*

Table 3 - G-Probe 27 Z-scores for Basanite, BOOS-1G Glass. 06/09/2023

Lab Code	H59	H61	H64
SiO2: 1	0.03	-0.08	*
TiO2: 1	0.00	3.17	*
AI2O3: 1	1.06	-2.61	*
Fe2O3T: 1	1.90	14.44	*
MgO: 1	-1.14	2.61	*
CaO: 1	0.58	-3.26	*
Na2O: 1	-0.35	-8.37	*
K2O: 1	0.00	6.13	*
P2O5: 1	1.23	-22.01	*
Ag: 1	*	*	*
As: 1	*	*	5.03
Ba: 1	0.05	-1.31	-0.41
Be: 1	10.25	*	0.55
Bi: 1	*	*	*
Ce: 1	0.71	-1.41	-0.37
Co: 1	-0.88	-0.99	-0.09
Cr: 1	0.23	-3.76	-1.67
Cs: 1	2.17	*	*
Cu: 1	1.70	*	-1.88
Dy: 1	1.05	-2.15	-0.58
Er: 1	2.30	-2.21	-0.34
Eu: 1	0.36	-1.46	-0.56
Ga: 1	0.24	-2.14	0.82
Gd: 1	0.50	-1.88	-0.55
Ge: 1	2.59	*	-0.23
Hf: 1	-0.26	-1.85	0.03
Ho: 1	0.82	-1.93	-0.35
ln: 1	*	*	*
La: 1	0.73	-1.79	-0.25
Li: 1	-0.67	-1.41	-0.19
Lu: 1	2.84	-2.03	0.00
Mn: 1	-0.06	5.29	-2.41
Mo: 1	0.00	*	-1.01
Nb: 1	*	-0.74	-0.54
Nd: 1	*	-3.13	-0.64
Ni: 1	-1.72	-1.23	3.45
Pb: 1	0.35	-0.14	-3.29
Pr: 1	*	-1.86	-0.19
Rb: 1	*	-0.32	-1.78
Sb: 1	*	*	*
Sc: 1	*	0.52	-0.37
Sm: 1	*	-2.52	-0.49
Sn: 1	*	*	*
Sr: 1	0.15	-3.73	-1.66
Ta: 1	*	-1.79	0.01
Th: 1	*	-2.46	-0.27
Th: 1	*	-1.26	0.20
TI: 1	*	*	*
Tm· 1	*	-3.34	-0.16
U: 1	0,39	-1.13	0.08
V: 1	-1.41	-0.35	-0.20
W: 1	*	*	-0.26
Y 1	2.38	-2 84	-0 61
Yh: 1	*	-2.63	-0.41
7n·1	-3 28	4 46	67 73
7r· 1	1 59	-3 37	-1 21
21.1	1.58	-5.57	-1.21

H33 129 Ξ 118 H5

LA-ICP-MS 🔵 EPMA

0.7

0.5

H41

7.9

5.8

2.2

Concentration Sc mg kg⁻¹

Concentration Rb mg kg⁻¹

Concentration Pb mg kg⁻¹

0.55

0.50

0.40

0.30

0.20

0.10

0.04

363

330

290

250

210

192

35

33

31

30

28

26

24

23

21 19

17

15

14

Concentration Y mg kg⁻¹

Concentration V mg kg⁻¹

H33 H61 H25 H18 H17

H33 H48 H18 H59 H51

H33 H48 H25 H61 H18

42 H2

H16 H5 H38 H13

117

425 H3

136

H5 H8 H3 138

Concentration Tm mg kg⁻¹

Figure 1: G-Probe 27 - Basanite, BOOS-1G Glass. Data distribution charts for elements for which values were assigned or provisional values given for guidance. Horizontal lines show the limits for -2<z<2 where the z-score is derived according to the Quality specified.

Figure 2: G-Probe 27 - Basanite, BOOS-1G Glass. Data distribution charts provided for information only for elements for which values could not be credited with assigned or provisional status.

SiO2	•	•		•	•	•	•	•	•	•			•	•	•				•		•	•	•	•	•	•		•		
TiO2		•	•	•	•	•	•		•	•	•	•	•		•			•	•	•	•	•	•		•	•	•	•	•	
AI2O3	•	•	•	•	•	•	•	•	•	•		•	٠	•	•			•	•		•	•			•	•		•	•	•
Fe2O3T		•	•	•	•	•	•		•	•	•	•	•		•			•	•			•	▼		•	•		•	•	
MgO		•	•	•	•		•	•		•	•	•	•	•	•			•	•		•	•	•		•	•	•	•		•
CaO	•		•	•	•	•	•	•		•	•	•	•		•			•				•	•		•	•	•	•	•	•
Na2O	•		•	•	•	•	•			•	•		٠	•	•			•	•		•	•		•	•	•		•	•	•
K2O	•	٠	•	•	٠	٠	▼			•	•		•	▼	٠				•		•	•	•		•	•		•	•	
P2O5			•	▼	•	•		•		•	•	•	•	•	•			•	•			•		▼				•	•	
Ag	•							•			٠		٠			•			•	•		•								•
As	•		•			•		•					٠	•		•			•		▼	•			•	•			•	
Ва	•	٠	•			٠		٠	•	•	٠	٠	•	•	٠	٠	•		٠	•	•	•	•		•	•	•		٠	•
Be	•		•			٠		٠	•		٠	٠	٠	•	٠	•	•		٠		•	•			•					
Bi	•		•			٠		٠								•			٠			•							٠	
Се	•	•	•			٠		٠	٠		•	٠	•	•	٠	•	٠		٠	•	•	•	٠		•	•	•		•	•
Co	•	٠	•			٠		٠	٠		٠	٠	٠	•	٠	•	•		٠	•	•	•	•		•	•	•		٠	
Cr		•	•			٠	▼	٠	•		•	٠	•	•	٠	•	•		٠	•	•	•	٠		•		•		•	•
Cs	•	•	•			٠		٠	٠		•	٠	٠	٠	٠	•			٠	•	•	•			•	•			•	
Cu	•		•			•		٠	•		•	٠	٠		٠	•	٠		٠	•	•	•	٠		•	•	•		•	•
Dy	•	٠	•			•		٠	٠		٠	٠	٠	•	•	•	•		•	•	٠	٠	•		•	٠	٠		٠	
Er	•	٠	•			٠		٠	٠		٠	٠	٠	٠	٠	•	٠		٠	٠	•	٠	٠		٠	٠	•		٠	
Eu	•	٠	•			٠		٠	٠		٠	٠	٠	٠	٠	٠	٠		٠	٠	•	٠	٠		٠	٠	•		٠	
Ga	•	•	•			٠		٠	•		٠	٠	٠	٠	٠	٠	٠		٠	٠	•	٠	٠		٠	•	•		٠	•
Gd	•	•	•			٠		٠	•		•	•	٠	•	٠	•	•		٠	•	•	•	•		•	•	•		٠	
Ge	•	•	•					٠				•	•		٠	•			٠		•					•			٠	
Hf	•	٠	•			•		٠	٠		٠	•	٠	•	•	•	•		•	•	٠	٠	•		•	٠	٠		٠	
Ho	•	٠	•			•		٠	•		٠	٠	٠	•	٠	٠	•		٠	٠	•	٠	•		•	٠	•		•	
In	•					•		٠			٠	•	٠			٠			•	•	٠	٠	•						٠	
La	•	٠	٠			•		٠	٠		٠	٠	٠	•	•	٠	٠		•	٠	٠	٠	٠		٠	٠	٠		•	•
Li	•	•	•			•		٠	•		•	•	٠	•	٠	•	•		•	•	•	•	•		•	•			•	•
Lu	•	•	•			•		٠	•		•	•	٠	•	٠	•	•		•	•	•	•	•		•	•	•		•	
Mn	•	•	•		٠	•	•	٠	•	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•
Мо	•	•	•			•		٠	•		٠	•	•	٠		٠	٠		•	٠	٠	•	٠						•	
Nb	•	•	•			•		٠	•		٠	•	•	٠	•	٠	•		•	٠	٠	•	٠		٠	٠	٠		•	
Nd	•	•	•			•		•	•		•	•	•	•	٠	•	•		٠	•	•	•	•		•	•	•		•	•
Ni	•	•	•			•	•	•	•		•	•	•	•	٠	•	•		•	•	•	•	•		•	•	•		•	•
Pb -	•	•	•			•		•	•		•	•	•	•	•	•	•		^	•	•	•	•		•	•	•		•	•
Pr	•	•	•			•		•	•		•	•	•	•	•	•	•		•	•	•	•	•		•	•	•		•	•
Rb	•	•	•			•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•		•	•	•		•	
Sb	•	•	•			•		•	•				•			•			•		•	•							•	
Sc	•	•	•			•		•	•		•	•	•	•	•	•	•		•	•	•	•			•	•			•	
Sm	•	•	•			•		•	•		•	•	•	•	•	•	•		•	•	•	•	•		•	•	•		•	
Sn	•	•	•			•		•	•		•	•	•	•		•	•		•	•	•	•	•			•			•	
Sr	•	•	•			•		•	•	•	•	•	•	•	٠	•	•		٠	٠	•	•	•		٠	•	•		•	•
	Ŧ	H3	H5	H6	H7	H8	6H	H H H	H13	H14	H16	H17	H18	H20	H21	H25	H26	H27	H29	H30	H33	H34	H36	H37	H38	H41	H42	H43	H45	H46

	Ŧ	H3	H5	H6	H7	H8	6H	H11	H13	H14	H16	H17	H18	H20	H21	H25	H26	H27	H29	H30	H33	H34	H36	H37	H38	H41	H42	H43	H45	H46
Zr	•		•			•		•	•		•	•	•		•	•	•		•	•	▼	•	•		▼	•	•		•	
Zn	•	•				•		•	٠			•	•		٠		▼		•		▼	•	•						•	•
Yb	•	•	٠			•		٠	٠		•	٠	٠	٠	٠	•	٠		•	•		•	•		•	•	•		•	
Y	•	•	٠			•		٠	٠		•	٠	•		٠	•	•		•	•	•	•	•		•	•	•		•	•
W	•	▼	٠			•		٠	٠			٠	٠	٠		٠			•	•		•	•				•		•	
V	•	٠	٠			•		٠	٠		•	٠	•		٠	٠	٠		•	•	▼	•	•		•	•	•		•	
U	•		٠			•		٠	٠		•	٠	•	•	٠	٠	•		•	•	•	•	•		•	•	•		•	•
Tm	•		•			•		•	•		٠	•	•	•	•	•	•		•	•	▼	•	•		•	•	•		•	
ТΙ	•					•		•					•			•			•	•		•							•	
Th	•	٠	٠			•		٠	٠		٠	٠	•		٠	٠	٠		٠	•	•	•	•		•	•	٠		•	٠
Tb	•	٠	٠			•		٠	٠		٠	٠	•	٠	٠	٠	٠		٠	•	•	•	•		•	•	٠		•	
Та		•	٠			•		•	٠		•	٠	▼	٠	٠	٠	٠		•	•	•	•	•		•	•	•		•	

Figure 3: G-Probe 27 - Basanite, BOOS-1G Glass. Multiple z-score charts for laboratories participating in the G-Probe 27 round. Symbols indicate whether or not an elemental result complies with the -2 < z < +2 criteria (see key).

Multiple Z-Score Chart for G-Probe 27

SiO2		•	•	•	•	•	•	П	•	•	•	•	
TiO2	•	▼	•	•	•	•	•		٠	٠		•	
AI2O3			•	•	•	•	•	П	•	•	•	•	
Fe2O3T		•	•	•	•		•		•	•		•	
MgO	•		•		•	•	•	П	•	•		•	
CaO	•	▼	•		•	•	•		٠	•	•		
Na2O	•		•	•			•	П	•	•	•	•	
K2O	•	•	•	•		•	•		•	•		•	
P2O5	•	•	•	•	•	•	•	П	•	•	•	•	
Ag													
As	п	П	П	П	П	П	П	П	П	П	П		
Ва			•	•	•	•	•			٠	•	•	
Be	п	П	П		П		П	П	П		П	•	
Bi													
Се	п	П	•	•	•	•	•	•	П	•	•	•	
Со	п	•	•	•	•	•	•	П	П	•	•	•	
Cr	п	•	•	•	•	•	•	П	П	•	•	•	
Cs	П	П	П	•	•	•	П	•	П		П	П	
Cu		•	•	•		•	•			•		•	
Dy	П	П	•	•	•	•	•	•	П	•	•	•	
Er			•	•	•	•	•	•			•	•	
Eu	П	П	•	•	•	•	•	•	П	•	•	•	
Ga				•	•	•		•		•	•	•	
Gd	п	П	•	•	•	•	•	•	П	•	•	•	
Ge												•	
Hf	П	П	•	•	•	•	•	•	П	•	•	•	
Но			•	•	•	•	•	•		•	•	•	
In	п	П	П	П	П	П	П	•	П	П	П	П	
La		•	•	•	•	•	•			•	•	•	
Li	П	П	•	•		•	•	П	П	•	•	•	
Lu				•	•	•	•	•			•	•	
Mn		•	•	•		•	•	П	•	•		•	
Мо						•		•		•		•	
Nb		-	•	•	•	•	•		Π		•	•	
Nd			•	•	•	•	•	•	Π		•	•	
Ni	П	П	•		•	•	•	П	П	•	•		
Pb		•	•	•	•	•	•		Π	•	•	•	
Pr			•	- C	•	•	•	•		_	•	•	
Rb		•	•	•	•	•	•	-	_ _	_ _	•	•	
Sh		П	- _	-	- _	-	- _		П		-	_	
Sc			•	•	•	•	•	П	П		•	•	
Sm			-		-	-	-				-	-	
Sn			-	-	-	-	-	-			•	-	
Sr		•	•	•	•	•	•			•	•	•	
		•	•	•	•	•	•		U	•	•	•	
	H47	H48	H50	H51	H53	H54	H55	H56	H57	H59	H61	H64	

Zr	<i>L</i> .	<u>م</u>	•	•	•	4	•	•		•	•	4
Zn	п	•		•	•	•	П	Π	П	•		
Yb			•	•	•	•	•	•			•	•
Y	п	•	•	•	•	•	•		П		•	•
w								•				•
v	п	•	•	•	•	•	•	П	П	•	•	•
U			•	•	•	•	•			•	•	•
Tm	п	П	٠	•	•	٠	٠	٠	П	Π	•	•
ТΙ												
Th	п	•	٠	•	٠	٠	٠	Π	Π	Π	٠	٠
Tb			•	•	•	•	٠	٠			•	٠
Та	п	П	•	•	•	٠	•	П	П	П	•	•

Figure 3: G-Probe 27 - Basanite, BOOS-1G Glass. Multiple z-score charts for laboratories participating in the G-Probe 27 round. Symbols indicate whether or not an elemental result complies with the -2 < z < +2 criteria (see key).