

G-Probe 29 — an International Proficiency Test for Microanalytical Laboratories — Report on Round 29 (Tholeiitic Basalt glass, KBMO-1G) / November 2024

Dieter Garbe-Schönberg^{1*}, Peter Webb², Jay M. Thompson³, Philip Potts²

 ¹CAU Kiel University, Institute of Geosciences, Ludewig-Meyn-Strasse 10, 24098 Kiel, Germany.
 ² Retired from the Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
 ³ U.S. Geological Survey, Geology, Geophysics & Geochemistry Science Center, Denver Federal Centre, Denver, CO 80225, USA
 *Corresponding author, Dieter Garbe-Schönberg: e-mail dieter.garbe-schoenberg@ifg.uni-kiel.de

Keywords: proficiency testing, quality assurance, microanalysis, G-Probe 29, KBMO-1G, Iceland Tholeiitic Basalt glass

Abstract

Results are presented for Round 29 of the G-Probe Proficiency Testing programme for microanalytical laboratories, organised by the International Association of Geoanalysts (IAG). The test material distributed in this round of G-Probe was the Tholeiitic Basalt glass, KBMO-1G, produced at the United States Geological Survey (USGS) by Jay M. Thompson and Mike Pribil from material provided by the IAG. The starting material for the glass was the pulverized Tholeiitic Basalt known as BNA-1 that was collected from a basaltic lava flow in Iceland, believed to be the source of USGS reference material BIR-1. In this report, the data contributed by 34 laboratories are listed, together with an assessment of consensus values as best estimates of the true value, consequent z-scores and a series of charts that show the distribution of contributed values thus revealing the overall performance of participating laboratories. Assigned values were conferred for 37 elements, and provisional values for a further 10, out of 64 elements reported, but 17 were either reported in insufficient numbers or the results were too variable to be assessed in any way.

Introduction

This twenty-ninth round of G-Probe, the international proficiency testing programme for microanalytical laboratories, was conducted in a similar manner to recent rounds. The programme is organised by the IAG and conforms with the published G-Probe Protocol (IAG, 2020). The overall aim of the programme is to provide participating laboratories with *z*-score information for their reported measurement results so that each laboratory can decide whether the quality of their data is satisfactory in relation both to the G-Probe fitnessfor-purpose criterion and to the results submitted by other laboratories contributing to the round. In circumstances where *z*-scores are unsatisfactory, a participating laboratory is encouraged to investigate its procedures for unsuspected analytical bias and to take corrective action if it appears justified. The programme is designed to be part of the routine quality assurance procedures employed by microanalytical geochemistry laboratories.

G-Probe Steering Committee:

D. Garbe-Schönberg (principal organiser), P.C. Webb (results coordinator and website administrator),
P.J. Potts (results reviewer), M. Thompson (statistical advisor), C.J.B. Gowing (distribution coordinator),
J. M Thompson, L. Danyushevsky, R. Mertz-Kraus and A. Kronz (analytical advisors).

Timetable for Round 29 of G-Probe:

Distribution of test material: September 2024 Results submission deadline: 18th December 2024 Release of report: February 2025

1

G-Probe 29 Test Material details

The MORB-type tholeiitic basalt starting material was originally collected by Michael Wiedenbeck (GFZ Potsdam) and Olgeir Sigmarsson (CNRS) from the same quarry believed to be the source of USGS Reference Material BIR-1. The collected material was processed at BGS under the direction of Charles Gowing and is currently in the process of certification as Certified Reference Material "IAG BNA-1 Iceland Tholeiitic Basalt" (IAG 2025). The conversion into a glass was done at the USGS in Denver by Jay Thompson and Mike Pribil by fusion of ~152 grams in a platinum bowl in air at 1430°C for 70 minutes with no stirring. The melt was then poured into a platinum bowl and submerged in a water bath for rapid quenching and fragmentation of the glass. Some heterogeneities of PGE and volatile elements should be expected as a consequence of this glass-making method. Glass fragments were collected for supplying either as loose chips or mounted as chips "A" and "B" into 12.5 mm (1/2") epoxy plugs, with final polishing at University of Göttingen (A. Kronz). These items were provided as the test material KBMO-1G for G-Probe Round 29.

The IAG G-Probe Protocol (IAG, 2020) requires assessment of homogeneity of the glass test material following ISO Guide 35:2017. Twelve randomly selected fragments of the glass were initially evaluated for homogeneity at the USGS (Jay M. Thompson analyst) with 4-5 single-spot analyses per fragment (a total of 57 spots) and analysed using LA-ICP-MS. Another subset of 20 chips was analysed by EPMA at University of Göttingen (A. Kronz analyst) with 10 lines per chip, to assess within- and between-chip heterogeneity of major elements. After careful assessment of all homogeneity data, the tholeiitic basalt glass fragments were considered suitable for use in this proficiency test.

Submission of results

For G-Probe 29, participants were instructed to apply their routine measurement procedures to provide a measurement result for each glass fragment representative of its average composition (Result A and Result B).

A total of 2069 measurement results submitted by 34 laboratories are listed in Table 1. Where results A and B were provided, the average was used for the subsequent data assessment. Of the resultant 1168 values reported for individual measurands, 1042 values were by LA-ICP-MS from 23 laboratories, 82 by EPMA from nine laboratories, 37 by SEM from five laboratories, and 7 by μ -XRF from one laboratory.

Target values and results summary

Robust statistical procedures were used to derive a consensus value from the contributed data for each elemental component in the test material. These procedures included the evaluation for each dataset of the Huber robust mean, the median or a mode derived from a kernel density distribution as detailed by Thompson (2017). Evaluations of consensus values involved a critical assessment of distributions of results from ordered sequential charts for each measurand.

Consensus values (Table 2, Figure 1) were credited with assigned status on the basis that:

- (i) sufficient laboratories had contributed data for estimating a measurand (usually a minimum of 15);
- (ii) visual assessment gave confidence that a substantial proportion of the results distribution was symmetrically disposed about the consensus;
- (iii) the ratio of the uncertainty in the location estimate to the target precision (H_a , as defined below) was an acceptably small value; and
- (iv) where possible, an evaluation of measurement results by procedure was judged to provide no clear evidence of procedural bias among the measurement results from which the consensus was derived.

Where these criteria were nearly, but not fully met, measurands were credited with 'provisional' rather than 'assigned' status. Instances of provisional status were identified because either:

- (i) a smaller number of results (less than 15 but usually at least 8) contributed to the consensus, or
- (ii) the results were unduly dispersed in relation to the target precision (*H*_a, see below), or
- (iii) the distribution of results was significantly skewed
 (but not severely enough to preclude the recognition of a clear consensus), or
- (iv) procedural bias was identified but a target value could nevertheless be recognised based on the most

coherent part of the overall data distribution conforming approximately to a random sample from a normal distribution.

Where data were either insufficient in number, or the distribution was too variable or too highly skewed for the confident estimation of a consensus to provide *z*-scores, data distributions are presented 'for information' only.

The resulting consensus values were those judged to be the best available estimates of the true composition of the test material and therefore suitable for use as target values for proficiency testing. It should be noted, however, that in many cases, these estimates are derived from a single analytical method.

Data distributions for those measurands given 'assigned' or 'provisional' status are presented in Figure 1, and those for which no status could be conferred are shown 'for information' in Figure 2. Measurement results in the Figure 1 and 2 data distribution plots are presented in order of increasing magnitude and identified according to laboratory code. Data symbols are coded by colour and shape according to the method of measurement. For major elements, results were obtained by EPMA, LA-ICP-MS, SEM, and μ-XRF. Electron beam results for major elements are broadly in agreement with LA-ICP-MS results, although the LA-ICP-MS results are often more variable. Consensus values were generally reasonably well defined for most major elements, but less so for TiO₂ and K₂O being credited only with provisional status. While only a limited number of values were contributed for K₂O as a consequence of the very low mass fractions in this basalt glass, data for TiO₂ appear to be biased

Figure 4: Ridgeline plot of TiO₂ data suggests method bias between LA-ICP-MS, EPMA, and SEM results

with LA-ICP-MS clustering on the low end of the distribution while results from SEM are on the high end (Figure 4). Similarly, results from LA-ICP-QMS for MgO appear to be systematically low. While results from EPMA showed narrow data distributions for Fe₂O₃ and Na₂O, a number of discordant results were reported from other techniques, with LA-ICP-MS on the high side for Fe₂O₃, and large variation in data from SEM and LA-ICP-MS for Na₂O. But sufficient numbers were in accord to warrant assigned status for these elements. Data for P₂O₅ were too limited by number and did not show a clear point of inflection in the data distribution - a plot of the contributed results is shown in Figure 2 for information. No statistically significant differences between fragments A and B could be observed for major elements.

For most trace elements there is no option other than to make assessments based on LA-ICP-MS data. Concerns, therefore, about the possibility of single method bias, noted above, must be in principle kept in mind and the outcomes should be regarded with caution in the reflection of true values. Nevertheless, the derived consensus values represent the best that currently can be obtained and therefore are considered appropriate for the purposes of this proficiency test.

For the majority of trace elements, the agreement among the results submitted is very good and 28 elements were credited 'assigned' status defined by robust means or medians, with very clear consensus values for Ba, Co, Cr, In, Nb, Rb, Ta, V, Zr, and most REE. Indium having a very consistent data distribution was given 'assigned' status despite the limited number of results. The elements Be, Ge, Mn, Mo, Th, U, W, and Zn were considered to be of provisional status in part because of less well-defined data distributions and in part because there were only marginally a sufficient number of values contributing to the consensus. Assigning a provisional status to Be and W with consistent data distributions but a low number of reported analyses provides the user with z-score statistics and may help to evaluate their performance for elements that are rarely analysed in depleted oceanic basalts. Three labs detected gross or significant difference of Pb between chips "A" and "B". Differences were also found for Ag, As, B, Bi, Cd, Se, U, and W by

individual laboratories but this could be related to the very low mass fractions close to limits of detection.

Few laboratories in this round required pre-notification of a major element oxide for internal standardisation of LA-ICP-MS data. Values of 47.5 g/100g for SiO₂ and/or 12.90 g/100g for CaO in the bulk starting material BNA-1 (IAG, 2025) were provided for laboratories coded K7, K17, K20, K31, K41 and K45. These values compare well with G-Probe 29 consensus values of 47.28 g/100g (SiO2) and 12.88 g/100g (CaO). When assessing data distributions for major elements, notice was taken of the usually more coherent sets of data derived by EPMA, with the exception of K₂O where EPMA showed large variation of reported values possibly as a consequence of a very low mass fraction of K₂O. For trace elements a tendency was noted for results derived from calibrations involving USGS reference materials to be relatively more consistent. That consideration was taken into account in the choice of an appropriate consensus value.

Table 2 lists assigned and provisional values for 8 major components and 39 trace elements in G-Probe 29, KBMO-1G glass. Data distribution charts for the 47 measurands that were judged to have satisfactory distributions for consensus values to be conferred with assigned or provisional status are shown in Figure 1. These are: SiO₂, TiO₂*, Al₂O₃, Fe₂O₃T, MgO, CaO, Na₂O, K₂O*, Ba, Be*, Ce, Co, Cr, Cu, Dy, Er, Eu, Ga, Gd, Ge*, Hf, Ho, In, La, Li, Lu, Mn*, Mo*, Nb, Nd, Ni, Pr, Rb, Sc, Sm, Sr, Ta, Tb, Th*, Tm, U*, V, W*, Y, Yb, Zn* and Zr. Of these, values of the 10 analytes marked '*' were credited with provisional status for reasons given above.

Data distribution plots for the 10 analytes: P_2O_5 , Ag, As, B, Bi, Cd, Cs, Pb, Sb, and Sn are plotted in Figure 2 for information only, as the data were either insufficient in number, or the data distribution was too highly dispersed (Cd, Pb) or too highly skewed (P_2O_5) for the estimation of a consensus to provide *z*-scores.

Observations

The form of data distribution plots for most elements provides sufficient, and in many cases solid justification for conferring assigned values. Some data distributions of major elements exhibited notably high and low tails: high tails were observed in LA-ICP-MS data for SiO₂, Al₂O₃, Fe₂O₃T, Na₂O, in EPMA data for P₂O₅, K₂O and in SEM data for TiO₂, CaO while pronounced low tails are significant in LA-ICP-MS data for TiO₂, MgO, CaO. Low extreme values were, in individual cases, reported by SEM for SiO₂, CaO, and by EPMA for Al₂O₃. It is clear that EPMA laboratories still produce the most consistent results for major elements but are not immune to outliers.

The remarkable consistency of data for most trace elements (though provided almost entirely by LA-ICP-MS) is apparent, as only a few trace elements, including U, Pb, Sn and P_2O_5 exhibit notable high tails, and likewise there are small low tails for Ge, Ta, W, and HREE.

For some trace elements data distributions are highly skewed (Pb, U) suggesting heterogeneous contamination from the glass making process. This was confirmed by different results obtained by a few laboratories for Pb in A and B chips (see above) and had previously been observed in homogeneity testing data.

Z-score analysis

Assessment of submitted results followed the strategy adopted in recent rounds of G-Probe (Garbe-Schönberg et al. 2021) and detailed in the G-Probe protocol (IAG, 2020). Based on an assessment of the variation of measurement results in earlier rounds, and in order to provide sufficient discrimination for the proficiency test to be helpful to participating laboratories, the fitness for purpose criterion applied throughout was provided by a modified form of the Horwitz function:

$$H_{a} = k \cdot X_{a}^{0.8495}$$

Where- H_a is the standard deviation for proficiency, also referred to as the target precision, calculated for each measurand; and X_a is the best estimate of the true composition, also known as the 'target value' (and may be credited with assigned or provisional status). The values of H_a and X_a are represented in *units of mass fraction*. The factor k = 0.01, is regarded as appropriate for laboratories working to a 'pure geochemistry' standard of performance, where analytical results are designed for geochemical research and where care is taken to provide data of high precision and accuracy, sometimes at the expense of a reduced sample throughput rate.

Z-scores were calculated for the average measurement result submitted by each laboratory from:

$$z = [X - X_a] / H_a$$

where X is the (average) measurement result submitted, X_a is the target value (assigned and provisional) and H_a is the target precision (all as mass fractions).

Z-score values for results submitted to G-Probe 29 are listed in Table 3. Z-scores derived from provisional values of measurands are shown in italics.

Participating laboratories are invited to assess their performance using the following criteria:

Z-score results in the range -2 < z < 2 are considered to be 'satisfactory' (in the sense that no action is called for by the participant). If the z-score for any element falls outside this range, especially if it is outside the range -3 < z < 3, laboratories are advised to examine their procedures and, if necessary, take action to ensure that their determinations are not subject to unsuspected analytical bias.

Should a participating laboratory decide that this performance standard is not appropriate for assessment of their measurement results, they are invited to recalculate their *z*-scores by substituting the appropriate value of the standard deviation for proficiency testing, H_a , into the equation for the calculation of *z*-scores (i.e., $z = [X - X_a] / H_a$). Adoption of such an approach should include a justification as to why an amended value of H_a is more appropriate for assessment of their data.

Overall performance

A summary of the overall performance of individual laboratories for this round is plotted in multiple *z*-score charts in Figure 3. In these charts, the *z*-score performance for each element is distinguished by symbols that make it easy to identify whether the measurements results were satisfactory or gave *z*-scores that exceeded the action limits. This chart is designed to help individual laboratories judge their overall performance in this proficiency test. Note, however, that participants should always review their *z*-scores in accordance with their own fitness-for-purpose criteria.

Participation in future rounds

The benefit from proficiency testing arises from regular participation and laboratories are invited to contribute to Round 31 of G-Probe, the test samples for which will be distributed in spring 2025.

Acknowledgements

The authors wish to thank Mike Pribil for help with vitrification of the basalt powder. Thomas Meisel is thanked for development of procedures involving the ShinyApp to facilitate the visualisation and analysis of proficiency testing datasets and to permit the derivation of modes according to Thompson (2017).

We also thank Andrea Mills and Charles Gowing (BGS, Keyworth) for arranging the dispatch and delivery of test materials, and A. Kronz (Univ. Göttingen, Germany) for final polishing of the epoxy mounts.

References

Garbe-Schönberg D., Webb P.C., Wilson S.A., Mertz-Kraus R., and Potts P.J. (2021) G-Probe 24 — an International Proficiency Test for Microanalytical Laboratories — Report on Round 24 (Basanite glass, BKWE-1G) / February 2021. International Association of Geoanalysts: Unpublished report.

IAG (2025) Reference Material Certificate of Analysis –
 IAG BNA-1 (Iceland Tholeiitic Basalt). International
 Association of Geoanalysts (Keyworth, UK)

IAG (2020) Protocol for the Operation of the G-Probe Proficiency Testing Scheme. International Association of Geoanalysts (Keyworth, UK), 20pp. <u>http://www.geoanalyst.org/wp-content/uploads/2020/08/G-Probeprotocol-August-2020.pdf</u>.

ISO (2017) GUIDE 35:2017(E): Reference materials – Guidance for characterization and assessment of homogeneity and stability. – International Organisation for Standardisation (Geneva, Switzerland), 105pp.

Thompson, M. (2017) On the role of the mode as a location parameter for the results of proficiency tests in chemical measurement. *Anal. Methods*, **9**, p.5534-5540.

		KOA	Kap	144	KAD	1/7.4	1/70	1/10.4	KAOD	1644.4	KAAD	164.0.4	KAOD
Lab C	ode	KJA	КЗВ	K4A	K4B	N/A	К/В	KIUA	KIUB	KIIA	K11B	K12A	K12B
SiO2	g 100g-1	47.036		47.4	46.4			47.79	47.69	46		47.207	
TiO2	g 100g-1	0.903		0.9	0.87			0.8894	0.8928	0.95		0.846	
AI2O3	g 100g-1	15.463		15.1	15.3			15.03	15.08	15.79		14.831	
Fe2O3T	a 100a-1	11 427		12	12.3			11.6	11.54	11.32		11 758	
MaQ	g 100g-1	10.491		10.7	11.2			10.7	10.73	11		10.596	l
NigO	g 100g	10.401		10.7	11.2			10.7	10.73	10.05		10.380	
CaO	g 100g-1	12.987		12.7	12.8			12.93	13	13.35		12.9	
Na2O	g 100g ⁻¹	1.713		1.89	1.9			1.8	1.8	1.57		1.698	
K2O	g 100g-1							0.0216	0.0216	0.019		0.019	
P2O5	g 100g-1							0.0188	0.019	0.019			
Aa	ma ka-1									0.231			
Ag	ing hg							0.4505	0.4525	0.201			
AS	mg kg-							0.1525	0.1535	0.089			
Au	mg kg ⁻¹									5.99			
в	mg kg ⁻¹							0.7044	0.958				
Ва	mg kg-1			5.85	6.18	5.86	6.1	5.772	5.884			5.6	
Be	ma ka-1					0.09	0.1	0.0896	0.0874				
DC D:	and here!					0.00	0.1	0.00040	0.00005	0.007			
ВІ	mg kg ·							0.00318	0.00665	0.007			L
Cd	mg kg ⁻¹							0.10617	0.13181	0.099			
Ce	mg kg ⁻¹			1.69	1.76	1.8	1.9	1.732	1.738	1.787		1.7	
CI	mg kg ⁻¹												
Co	mg kg-1			55.9	56.2	56.4	60.9	58.88	58.55	50.72		57,81	<u> </u>
C+	ma ka-1			576	591	555	549	530.4	543.3	533.25		564.55	l
	ing kg			570	301		540	330.4	343.3	555.25		304.33	
Cs	mg kg ⁻¹							0.0028	0.0049				
Cu	mg kg-1			118	115	120	134	119.1	111.5	95.03		116.63	
Dy	mg kg ⁻¹			2.37	2.4	2.32	2.55	2.345	2.349	2.47		2.3	
Er	mg kg ⁻¹			1.6	1.63	1.55	1.72	1.576	1.588	1.668		1.6	
Fu	ma ka-1			0.45	0.47	0.49	0.51	0 4854	0.4877	0.538		0.48	
-				0.40	0.47	0.40	0.01	0.4004	0.4011	0.000		0.40	
F	mg kg ·												L
Ga	mg kg ⁻¹			15.9	15.5			15.53	15.58	12.9		15.06	
Gd	mg kg ⁻¹			1.54	1.81	1.62	1.69	1.736	1.734	1.722		1.74	
Ge	mg kg-1							1.712	1.722	1.283			
Hf	mg kg-1			0.5	0.52	0.51	0.55	0.5145	0.5199	0.624		0.51	
 Ho	ma ka-1			0.51	0.62	0.53	0.60	0.5007	0.5155	0.621		0.5	
	ing kg			0.51	0.55	0.55	0.01	0.3097	0.0100	0.571		0.5	
In	mg kg-1							0.0553	0.0534	0.052			
La	mg kg ⁻¹			0.53	0.58	0.55	0.6	0.5531	0.5487	0.58		0.54	
Li	mg kg ⁻¹					3.36	3.67	2.876	2.883			2.9	
Lu	mg kg-1			0.23	0.24	0.22	0.25	0.2266	0.2246	0.26		0.23	
Mn	ma ka-1	1249.3		1339	1360	1460	1502	1360	1358	1262 7		1364 72	
Ma	and here!	121010				0.47	0.40	0.4600	0.4626	0.000		0.45	
NO	mg kg ·					0.17	0.16	0.1628	0.1636	0.229		0.15	L
Nb	mg kg ⁻¹			0.49	0.54	0.45	0.45	0.4795	0.4796	0.506		0.46	
Nd	mg kg ⁻¹			2.43	2.18	2.16	2.32	2.215	2.221	2.228		2.16	
Ni	mg kg ⁻¹			257	252	248	289	250.5	247.3	213.7		240.4	
Ph	ma ka-1					0.15	0.19	0.1413	0.4376	0.158		0.15	
Dr	ma ka-1			0.36	0.34	0.35	0.4	0 3372	0.3386	0.375		0.33	
F1	ilig kg			0.50	0.54	0.33	0.4	0.3372	0.3300	0.373		0.00	
KD	mg kg-'			0.5	0.4	0.17	0.19	0.1731	0.177	0.179		0.16	l
Re	mg kg-1							0.00054	0.00068				
S	mg kg-1												
Sb	mg kg-1												
Sc	mg kg-1			41.3	41.5	40.5	40.3	42.4	42.54	44.31		42.6	
80	ma ka-1												
0.0				4.4	0.00	1.00	1.00	1.00	4.007	0.000		4.00	l
sm	mg kg ⁻¹			1.1	0.99	1.02	1.09	1.02	1.027	0.992		1.03	L
Sn	mg kg-1					0.28	0.32			0.223			
Sr	mg kg-1			104	106	109	117	107.6	108.2	109.09		103.71	
Та	mg kg-1					0.03	0.04	0.0312	0.0314	0.039			
ть	mg kg-1			0.32	0.32	0.32	0.36	0.3209	0.3219	0.356		0.31	
1.2 To	maluet			0.02	0.02	0.02	0.00	0.0200	0.0210	0.000		0.01	l
Ie	mg kg-												I
Th	mg kg-1					0.02	0.02	0.0238	0.0238	0.028		0.02	L
ті	mg kg-1												
Tm	mg kg-1			0.22	0.23	0.22	0.24	0.222	0.2226	0.259		0.22	
u.	mg kg-1					0.01	0.01	0.0077	0.0108	0.018		0.01	
<u>.</u>	ing Kg			007	007	0.01	0.01	0.0077	0.0100	0.010		0.01	ł
v	mg kg-'			297	297	304	304	303.7	304.6	288.89		315.83	
w	mg kg-1							0.2198	0.2205	0.226			
Y	mg kg-1			14.3	14.3	14	15.4	13.88	14	15.29		13.62	
Yb	mg kg-1			1.54	1.56	1.48	1.6	1.527	1.532	1.612		1.5	
Zn	ma ka-1			76.8	77 1	68	72.1	66.45	66	64 02		82.4	
7.	····g kg			10.0	12.0	10.5	10.0	12.00	12.4	15 47		12.00	ł
141	I I I I KG			I 13.1	13.9	12.0	13.0	I 13.02	I 13.1	10.47		13.00	

Lab Co	ode	K14A	K14B	K15A	K15B	K16A	K16B	K17A	K17B	K20A	K20B	K21A	K21B
SiO2	g 100g-1	47.22	47.24	47.49	47.49	47.72	47.81					47.324	47.166
TiO2	a 100a-1	0.03	0.03	0.74	0.74	0.01	0.01	0.93	0.93			0.967	0.864
1102	g 100g	0.93	0.95	0.74	0.74	0.91	0.91	0.03	0.03			0.007	0.004
AI2O3	g 100g-1	15.45	15.38	12.71	12.64	15.45	15.47	15.82	15.49			14.947	14.959
Fe2O3T	g 100g-1	11.09	11.1	11.61	11.72	11.37	11.27	11.47	11.32			11.027	11.034
MaO	g 100g-1	10.43	10.52	7.31	7.21	10.68	10.74	9.54	9.44			10.556	10.618
	a 100a-1	13.05	13.04	11.30	11.46	12.05	12.05	12.42	12.37			12.6	12 595
CaU	g roog	13.03	13.04	11.39	11.40	12.95	12.95	12.42	12.37			12.0	12.305
Na2O	g 100g-1	1.63	1.61	1.69	1.7	1.72	1.72	1.69	1.68			1.694	1.702
К2О	g 100g-1					0.019	0.02	0.02	0.02			0.024	0.021
P2O5	g 100g-1			0.022	0.02	0.051	0.046	0.019	0.019			0.026	0.026
٨	ma ka-1												
Ag	ilig kg												
As	mg kg ⁻¹					0.162	0.2						
Au	mg kg ⁻¹												
в	mg kg ⁻¹												
- Pa	ma ka-1			4.04	4.06	6.017	6.035	5 77	5 72	6.1			
Ба -	ilig kg			4.34	4.30	0.017	0.000	5.11	5.72	0.1			
Be	mg kg ⁻¹												
Bi	mg kg ⁻¹					0.002	0.006						
Cd	mg kg-1					0.101	0.12						
<u> </u>	ma ka-1			1.42	1.52	1 765	1 760	1.66	1.50	1 72			
Ce	ilig kg			1.42	1.52	1.705	1.709	1.00	1.59	1.72			
CI	mg kg ⁻¹											10	10
Co	mg kg ⁻¹			60.7	60.24	59.927	59.892	57.1	56.5				
Cr	mg kg-1			480	475	547.4	551	527	514				
	ma ka-1					0.006	0.006						
-	ing Kg -					0.000	0.000						
Cu	mg kg ⁻¹			108	118	125.7	128.3	108	113				
Dy	mg kg-1			2.03	1.97	2.433	2.411	2.21	2.1	2.64			
Er	mg kg ⁻¹			1.36	1.37	1.606	1.624	1.48	1.4	1.78			
 E	ma ka-1			0.42	0.44	0.5	0.5	0.47	0.44	0.54			
Eu	ilig kg			0.42	0.44	0.5	0.5	0.47	0.44	0.34			
F	mg kg ⁻¹											550	670
Ga	mg kg-1			14.5	14.7	15.7	15.8	14.6	14.3				
Gd	ma ka-1			1.42	1.4	1.72	1.735	1.58	1.51	1.84			
0.	and here!					1 2 4 2	1.264	2.22	0.11				
Ge	mg kg ·					1.343	1.304	2.32	2.11				
Hf	mg kg ⁻¹			0.44	0.44	0.53	0.527			0.61			
Но	mg kg-1			0.44	0.44	0.529	0.532	0.49	0.46	0.58			
In	ma ka-1			0.05	0.06	0.056	0.059			0.05			
	and here!			0.00	0.00	0.540	0.000	0.50	0.5	0.00			
La	mg kg ·			0.44	0.46	0.542	0.551	0.52	0.5	0.57			
Li	mg kg ⁻¹					2.962	2.991	2.91	2.92				
Lu	mg kg-1			0.19	0.2	0.227	0.227	0.21	0.2	0.26			
Mn	ma ka-1	1883	1414	1178	1178	1317	1316	1322	1312			1193	1146
Mill .	ing ing	1000	1414	1110	1170	0.400	0.477	0.40	0.40	0.47		1100	1140
мо	mg kg-					0.163	0.177	0.12	0.12	0.17			
Nb	mg kg ⁻¹			0.44	0.49	0.502	0.506	0.45	0.44	0.52			
Nd	mg kg ⁻¹			1.79	1.92	2.248	2.273	2.07	1.99	2.32			
Ni	ma ka-1			250	253	266.3	266.4	236	233				
				200	200	200.0	200.4	200	200				
РЬ	mg kg ⁻¹			0.17	0.23	0.174	0.251	0.2	0.21				
Pr	mg kg-1			0.27	0.29	0.345	0.344	0.31	0.31	0.33			
Rb	mg kg-1					0.179	0.171	0.18	0.15				
Re	ma ka-1												
• • •	maluet							470	400			20	20
3	mg Kg ⁻							4/3	428			∠0	20
Sb	mg kg-1					0.009	0.021						
Sc	mg kg ⁻¹			41.34	40.48	42.791	42.735	59.6	57.8				
Se	mg kg-1					0,212	0.224						
e	maluert			0.76	0.95	1.026	1.051	0.07	0.0	1.04			
oifi -	mg Kg ⁻			0.70	0.00	1.020	1.051	0.97	0.9	1.04			
Sn	mg kg ⁻¹					0.257	0.293						
Sr	mg kg ⁻¹			91.97	92.65	107.1	107.7	102	98.4				
Та	mg kg-1					0.034	0.032						
ть	maluet			0.00	0.00	0.004	0.002	0.2	0.00	0.25			
-	ing Kg -			0.20	0.28	0.331	0.33	0.3	0.28	0.30			
Te	mg kg-1					0.041	0.034						
Th	mg kg ⁻¹			0.02	0.02	0.024	0.023	0.02	0.02				
ті	ma ka-1		i			0.003	0.011					i	
Tm	maluet			0.10	0.10	0.000	0.000	0.24	0.2	0.26			
1 m	mg kg-'			U.18	0.19	0.232	0.232	0.21	0.2	0.26			
U	mg kg ⁻¹					0.01	0.014	0.02	0.01				
v	mg kg-1			274	277	302.7	301.9	300	301				
w	ma ka-1		1	0.2	0.15	0.208	0.208					1	
···				44.04	44.00	0.200	0.200	40.00	10.0	45.05			
1	mg Kg ⁻			11.84	11.82	14.4	14.4	12.90	12.2	15.35			
Yb	mg kg ⁻¹			1.31	1.34	1.531	1.545	1.4	1.37	1.75			
Zn	mg kg-1			70.5	70.24	68.7	68.3	77.93	77.6				
7r	ma ka-1			11 11	11 12	13.5	13.5	12 45	11 7	15.21	1		
	• ···· 9 ** 9			11111	1 1 . 1 4	10.0	10.0	12.70	111.1	10.41			

Lah C	ode	K28A	K28B	K30A	K30B	K31A	K31B	K34A	K34B	K35A	K35B	K36A	K36B
SiO2	a 100a ⁻¹	44 14	43.71	47.4	47.59			47.22		48 273		48.8	48.7
TiO2	g 100g	0.78	0.77	0.01	0.01			0.92		0.859		0.87	0.87
A12O3	g 100g	13.66	13.5	15 59	15.2	15.0	16.1	15.31		15 357		15.3	15.3
Fe2O3T	g 100g	13.00	10.0	11.33	11.46	15.5	10.1	13.3		11.01/		11.87	11.8/
Ma0	g 100g	9.7	9.57	10.31	10.40	8 30	8.63	11.03		0.723		11.07	11.04
nigo Cao	g 100g	11.6	11 / 8	12.03	13.04	0.00	0.00	12.14		12 707			
Na2O	g 100g	1.66	1.40	12.33	17	2.12	1 05	12.14		1.664			
K20	g 100g	1.00	1.00	0.03	0.04	2.12	1.00	0.022		0.02			
R20	g 100g			0.03	0.04			0.022		0.02		0.03	0.03
F205	g 100g			0.04	0.03	2.47	0.41	0.027		0.019		0.03	0.03
Ag	mg kg-1					3.47	0.41	0.008					
A5	mg kg-1							0.096					
Au	mg kg ·			2.44	1.01	0.74	0.00	0.010					
В	mg kg	5.05	5.00	2.44	1.01	3.71	0.09	0.919		5.055		0.00	6.40
ва	mg kg ⁻	5.25	5.30	8.C	5.79	0.76	7.04	0.20		5.955		0.06	0.12
Be	mg kg ⁻ '			0.08	0.09					0.075			
BI	mg kg ⁻ '	0.070	0.070	0.45	0.44	0.47	0.4						
Ca	mg kg ⁻ '	0.076	0.072	0.15	0.11	0.47	0.4	0.075		4 700		4 750	1 7 4 0
Ce	mg kg ⁻¹	1.54	1.55	1.63	1.61	1.62	1.68	2.075		1.769		1.756	1.749
	mg kg-1	50.00	50.00	FF 07	50.00			50.00		FF 05		67.0	50.0
0	mg kg ⁻¹	53.32	52.69	55.97	56.09	470	E 4 4	59.86		55.95		57.3	50.8
Gr	mg kg ⁻¹	496.2	496.9	515	511	4/6	541	549		535.2		508	555
Cs	mg kg ⁻¹	407.1	407.7	0.01	0.01			40				467	46.
Cu	mg kg ⁻¹	108.4	108.2	107	115	239	105	105.1		113.4		122	124
Dy	mg kg ⁻¹	2.07	2.06	2.06	2.07			1.82		2.162		2.34	2.35
Er	mg kg ⁻¹	1.41	1.4	1.34	1.33			1.17		1.461		1.52	1.49
Eu	mg kg ⁻¹	0.431	0.429	0.46	0.46			0.42		0.478		0.494	0.493
F	mg kg ⁻¹												
Ga	mg kg ⁻¹	14.24	14.2	15.3	15.2	14	14.3	13.13		14.93		15	15
Gd	mg kg ⁻¹	1.51	1.48	1.52	1.5			1.32		1.553		1.69	1.66
Ge	mg kg ⁻¹	1.21	1.28	1.68	1.66			1.44		1.613			
Hf	mg kg ⁻¹	0.463	0.456	0.48	0.47			0.384		0.491		0.53	0.52
Но	mg kg ⁻¹	0.453	0.456	0.48	0.47			0.474		0.475		0.531	0.531
In	mg kg ⁻¹	0.045	0.045										
La	mg kg ⁻¹	0.487	0.478	0.53	0.52	0.52	0.48	0.359		0.538		0.54	0.543
Li	mg kg ⁻¹	2.63	2.64	3.13	2.87	5.61	3.05	2.92		2.814		3.03	3.09
Lu	mg kg ⁻¹	0.2	0.197	0.21	0.2			0.174		0.214		0.229	0.226
Mn	mg kg ⁻¹	1226	1218			1252	1202	1315		1302		1400	1389
Мо	mg kg ⁻¹	0.171	0.17	0.21	0.2								
Nb	mg kg ⁻¹	0.429	0.432	0.41	0.41			0.388		0.462		0.48	0.49
Nd	mg kg ⁻¹	1.97	1.92	2.05	1.98	2.09	2.07	2.17		2.038		2.19	2.21
Ni	mg kg ⁻¹	221	218.3	233	239	245	233	234		230.5		251	249
Pb	mg kg ⁻¹	0.139	0.164	0.33	0.18	1.61	0.28	0.148		0.462		0.16	0.22
Pr	mg kg ⁻¹	0.295	0.295	0.31	0.3	0.33	0.31	0.4		0.327		0.338	0.339
Rb	mg kg ⁻¹	0.15	0.152	0.13	0.17			0.132		0.176		0.179	0.179
Re	mg kg ⁻¹												
s	mg kg ⁻¹												
Sb	mg kg ⁻¹			0.05	0.03								
Sc	mg kg ⁻¹	38.72	38.77	38.1	38			43.1		40.05		41.4	41.3
Se	mg kg ⁻¹												
Sm	mg kg ⁻¹	0.884	0.901	0.94	0.91			1.07		0.947		0.99	1
Sn	mg kg ⁻¹			0.51	0.43	2.64	2.38	0.991					
Sr	mg kg ⁻¹	93.96	93.95	104	103	103	105	102		106.7		107	106
Та	mg kg ⁻¹	0.027	0.026	0.03	0.03			0.014		0.03		0.031	0.034
ТЬ	mg kg ⁻¹	0.281	0.28	0.3	0.29			0.291		0.294		0.337	0.333
Te	mg kg ⁻¹												
Th	mg kg ⁻¹	0.019	0.019	0.02	0.02	0.02	0.02	0.022		0.023		0.024	0.026
ТІ	mg kg ⁻¹												
Tm	mg kg ⁻¹	0.194	0.195	0.2	0.2			0.157		0.205		0.232	0.232
U	mg kg ⁻¹	0.006	0.008	0.01	0.01	0.04	0.02	0.009		0.017		0.013	0.013
v	mg kg ⁻¹	279.9	276.3	297	296			313		311.5		296	295
w	mg kg ⁻¹	0.202	0.194	0.23	0.21							0.24	0.23
Y	mg kg ⁻¹	12.28	12.25	12.3	12.2	10.8	10.7	11.9		12.3		14	14
Yb	mg kg-1	1.35	1.35	1.37	1.34	1		1.23		1.401		1.49	1.47
Zn	mg kg ⁻¹	67.42	67.89	77.4	77.5	120	97.8	95.8		64.11		72.6	72.4
Zr	ma ka-1	11.74	11.71	12.3	12.2	1		11.2		11.77		12.5	12.4

Lab Q		K27A	K27P	K20A	K30D	KA1A	KA1P	KAEA	KAED	KAGA	KACD	K 40 A	K AOD
Lab Co	bae	K3/A	K3/B	K30A	K30B	K41A	K41B	17.5	K45B	10.000	K40B	K40A	K40D
SI02	g 100g-1	49.7	49.9	48.05	48.15	51.262	50.902	47.5		46.809	46.994		
TiO2	g 100g-1	0.9	0.9	0.864	0.902	0.868	0.8575	0.871	0.869	0.889	0.893		
AI2O3	g 100g-1	14.7	14.7	15.25	15.31	16.396	16.406	15.19	15.26	15.764	15.673		
Fe2O3T	g 100g-1	11	10.8	11.4	11.3	10.083	9.93	11.47	11.51	11.98	11.874		
MgO	g 100g-1	10.4	10.6	10.71	10.64	9.203	9.33	10.64	10.6	10.598	10.557		
CaO	g 100g-1	12.7	12.6	12.96	12.93	12.89	12.84	12.9	12.85	12.726	12.737		
Na2O	g 100g-1	1.6	1.6	1 75	1 77	1.81	1 70/	1 77	1.82	1.48	1 / 82		
1420	g 100g	1.0	1.0	1.70	1.77	0.0216	0.0214	0.010	0.010	0.010	0.017		
K20	g luug .					0.0210	0.0214	0.019	0.019	0.019	0.017		
P2O5	g 100g-1					0.0363	0.0381	0.04	0.04	0.015	0.016		
Ag	mg kg ⁻¹					0.3918	0.439			0.216	0.683		
As	mg kg ⁻¹									0.08	0.116		
Au	mg kg ⁻¹												
в	mg kg ⁻¹					1.268	1.854						
Ba	ma ka-1					5 798	5 885	6.01	6.05	6 103	5 984	6.27	6.41
Bo	ma ka-1					0.1135	0.1/29	0.09	0.00	0.108	0.123	0.146	0.158
Be	ing kg					0.1133	0.1423	0.03	0.03	0.100	0.123	0.140	0.100
ВІ	mg kg ⁻ '									0.003	0.004		
Cd	mg kg ⁻¹					0.1485	0.1847			0.136	0.257		
Ce	mg kg ⁻¹					1.661	1.693	1.76	1.77	1.708	1.697	1.917	1.908
CI	mg kg ⁻¹												
Co	mg kg ⁻¹					59.311	60.246	57.42	57.4	56.932	55.933	55.4	55.1
Cr	mg kg ⁻¹					556.63	550.09	589.03	567.96	536.397	542.845	518	517
Cs	mg ka-1									0.001	0.005		
Cu	ma ka-1					116.450	115.34	110.12	135.31	111 242	101 936	100	107
Cu Du	nig kg					0.467	0.400	119.12	0.40	0.450	01.030	109	0.540
	mg kg					2.167	2.188	2.4	2.43	2.450	2.452	2.010	2.516
Er	mg kg ⁻¹					1.448	1.474	1.58	1.6	1.619	1.63	1.88	1.85
Eu	mg kg ⁻¹					0.4545	0.4643	0.49	0.5	0.486	0.482	0.564	0.556
F	mg kg ⁻¹												
Ga	mg kg ⁻¹					15.441	15.516	15.77	15.84	13.741	13.348	15.49	15.28
Gd	mg kg-1					1.573	1.564	1.74	1.79	1.747	1.833	1.823	1.81
Ge	mg kg ⁻¹					1.719	1.415	0.99	0.88	1.488	1.386	1.925	1.969
ыf	ma ka ⁻¹					0.4953	0.4895	0.52	0.53	0.535	0.586	0.672	0.644
	mg kg-1					0.4355	0.4033	0.52	0.55	0.535	0.500	0.072	0.606
но	ilig kg					0.4737	0.467	0.32	0.52	0.532	0.529	0.027	0.000
In	mg kg ⁻¹					0.0519	0.0532	0.05	0.05	0.063	0.053	0.0548	0.0568
La	mg kg ⁻¹					0.521	0.5309	0.55	0.56	0.578	0.556	0.6485	0.6392
Li	mg kg ⁻¹					3.066	3.008	3.32	3.61			3.184	3.222
Lu	mg kg ⁻¹					0.2012	0.206	0.23	0.23	0.221	0.0247	0.2767	0.2687
Mn	mg kg-1					1367	1372.4	1344.67	1339.16	1219.47	1224.748		
Мо	mg kg ⁻¹					0.1417	0.1406	0.18	0.19	0.207	0.239	0.1211	0.1205
Nb	ma ka-1					0.458	0.4626	0.52	0.51	0.476	0.486	0.519	0.521
Nd	ma ka-1					2.061	2.086	2.22	2.29	2 276	2.100	2.519	2.51
NI:	ing kg					2.001	2.000	2.22	2.20	2.270	2.22	2.010	2.01
	ilig kg					200.069	251.567	230.43	230.11	231.624	227.009	233	232
РЬ	mg kg ⁻¹					0.2006	0.1949	0.37	0.27	0.265	0.382	0.394	0.326
Pr	mg kg ⁻¹					0.3124	0.3229	0.34	0.35	0.353	0.343	0.3708	0.3579
Rb	mg kg ⁻¹					0.1792	0.1764	0.18	0.2	0.171	0.153	0.2128	0.2117
Re	mg kg ⁻¹												
S	mg kg-1									464.995	472.389		
Sb	mg kg ⁻¹									0.018	0.024		
Sc	mg kg ⁻¹					43.625	44.231	41.46	41.73	44.037	44.285	56.4	55.9
Se	mg ka-1			i		t				0.347	0.089		
Sm	ma ka-1					0 0222	0.9443	1	1.01	1.01	1.049	1 159	1 164
0	nig kg					0.3222	0.3445	0.76	0.71	0.269	0.212	1.155	1.104
Sn	mg kg					0.2927	0.2933	0.70	0.71	0.200	0.312	440	440
Sr	mg kg ⁻¹					103.583	105.873	100.39	101.13	106.844	106.286	113	113
Та	mg kg ⁻¹					0.029	0.029			0.031	0.031	0.038	0.038
Tb	mg kg ⁻¹					0.2916	0.3057	0.32	0.33	0.335	0.321	0.3748	0.3646
Te	mg kg ⁻¹									0.021	0.026		
Th	mg kg ⁻¹					0.0172	0.017	0.026	0.025	0.023	0.026	0.0311	0.0289
ті	mg kg-1									0.009	0.01		
Tm	ma ka-1					0.2027	0.207	0.225	0.23	0.223	0.227	0.276	0.256
	ma ka-1	l				0.00624	0.00625	0.000	0.20	0.000	0.012	0.0006	0.0101
<u>,</u>	ing Kg 1					0.00024	0.00025	0.009	0.012	0.009	0.012	0.0090	0.0101
v	mg kg ⁻¹	ļ				313./71	311.465	289.98	288.19	319.8	319.152	295	298
w	mg kg ⁻¹					0.2151	0.2105			0.235	0.0215		
Y	mg kg ⁻¹					12.687	12.831	14.21	14.42	13.831	13.595	14.1	14.5
Yb	mg kg-1					1.4	1.45	1.51	1.56	1.543	1.524	1.868	1.841
Zn	mg kg ⁻¹					82.683	82.46	65.8	64.33	75.272	72.28	76.3	75.9
Zr	mg kg ⁻¹					12.157	12.327	13.35	13.75	13.874	13.854	13.599	13.406

Lab Co	ode	K50A	K50B	K51A	K51B	K53A	K53B	K55A	K55B	K56A	K56B	K57A	K57B
SiO2	g 100g-1	48.14	48.14	47.084		46.97	46.93	48.3399	48.82123909	47.26	47.22	47.24	47.22
TiO2	g 100g-1	0.87	0.86	0.888		0.91	0.91	0.866419242	0.8682454	0.98	0.92	0.89	0.894
AI2O3	g 100g-1	15.11	15.15	15.246		15.07	15.02	15.0601795	15.3413	15.33	15.29	15.52	15.55
Ee2O3T	g 100g-1	11 37	11/13	11 185		11 14	11.07	11 80667718	11 012328/2	11.27	11.36	11 14	10.96
M=0	g 100g-1	10.55	10.64	10.706		12.60	10.69	10.94272703	10.01600007	10.60	10.60	10.14	10.00
MgO	g 100g	10.55	10.04	10.700		12.09	12.00	10.64272703	10.91099997	10.09	10.09	10.14	10.24
CaO	g 100g-1	12.59	12.59	12.898		0.17	0.18			13.08	13.06	12.66	12.7
Na2O	g 100g-1	1.82	1.82	1.724		1.69	1.69	1.698782091	1.7314	1.84	1.89	1.748	1.713
K2O	g 100g-1	0.02	0.02	0.015		0.03	0.03	0.002	0.00209			0.0211	0.0214
P2O5	g 100g-1			0.02									
Aα	ma ka-1												
Ac	ma ka-1							0.0746	0 175030084				
A5	ing kg							0.0740	0.173930904				
Au	mg kg⁻'												
В	mg kg ⁻¹							2.809505718	3.976904586				
Ва	mg kg ⁻¹	5.58	5.62	5.65				5.645237174	5.701030461			5.684	5.764
Be	mg kg ⁻¹												
Bi	mg kg ⁻¹												
Cd	ma ka ⁻¹							0 113388882	0 1260113/0				
00	ing kg	1.00	1.00	1.000				4.74570047	4 704507006			1.000	4.005
Ce	mg kg ·	1.08	1.08	1.090				1.71576017	1.721507030			1.002	1.000
	mg kg ⁻¹			ļ		ļ		L				ļ	
Co	mg kg ⁻¹	56.04	56.04					58.42812104	58.42177927			57.9	58.2
Cr	mg kg ⁻¹	535.16	535.18	525				534.90836	521.319667			534	545
Cs	mg kg ⁻¹					1		1					
Cu	ma ka ⁻¹	116.42	117.2	101.8				113 550348	116 36/1036			131.0	121
Du	ing kg	0.04	0.00	101.0				0.000000045	2 200222224			0.400	0.400
Бу	mg kg ·	2.34	2.32	2.43				2.283008240	2.300333724			2.188	2.182
Er	mg kg ⁻¹	1.58	1.57	1.67				1.565563265	1.597978192			1.515	1.523
Eu	mg kg ⁻¹	0.48	0.48	0.475				0.481701347	0.477396166			0.461	0.451
F	mg kg ⁻¹												
Ga	mg kg-1	15.3	15.32					15.02143595	15.21982852				
Gd	ma ka-1	1.69	1.67	1.76				1.696002623	1.698834024			1.616	1,705
Go	ma ka-1							1 307221368	1 330611000				
Ge	ing kg	0.40	0.54	0.504				1.307221300	0.400400544			0.474	0.400
HT	mg kg ⁻ '	0.49	0.51	0.591				0.481779783	0.488126511			0.474	0.488
Но	mg kg ⁻¹	0.5	0.51	0.536				0.501527201	0.503216663			0.491	0.499
In	mg kg ⁻¹							0.0476	0.0481				
La	mg kg ⁻¹	0.51	0.52	0.54				0.534900378	0.54775549			0.525	0.532
Li	mg kg ⁻¹	2.84	2.85	8				3.002087373	2.934978616				
	ma ka-1	0.23	0.23	0.231				0 219365801	0 220216878			0 209	0.212
10 Mar	ing kg	1262.04	1250.07	0.125				1215 940656	1220 511624			1252	1222
win	mg kg ·	1302.04	1339.07	0.125				1315.640050	1326.311024			1353	1332
Мо	mg kg ⁻¹			0.116				0.138942025	0.143116482				
Nb	mg kg ⁻¹	0.48	0.49	0.478				0.468905381	0.468845092			0.455	0.45
Nd	mg kg-1	2.07	2.1	2.07				2.152579378	2.176857552			2.083	2.154
Ni	mg kg ⁻¹	235.78	236.65	225				242.8963531	239.6942123			237.8	236.3
Pb	mg kg ⁻¹			0.331				0.160117652	0.182527833			0.914	0.141
Dr	ma ka ⁻¹	0.34	0.34	0.323				0 321932098	0 327931306			0.317	0.317
Dh.	ing kg	0.04	0.04	0.020				0.166074046	0.170410229			0.011	0.0172
n.0	ing Kg 1			0.101				0.1009/4045	0.170410328			0.204	0.173
Ke	mg kg ⁻¹					L		L					
S	mg kg ⁻¹												
Sb	mg kg ⁻¹							0.0174	0.0276				
Sc	mg kg ⁻¹	41.17	41.16	41.6				42.88980731	43.10088049			40.7	41.5
Se	mg kg ⁻¹												
Sm	ma ka-1	0,99	1.01	0,98		1		0.988491142	1.001137293			0.992	0.917
Sn	ma ka-1							0 233732790	0 259477876				
311	ilig kg	400.00	400.57	404.5				0.233732708	0.239477070			400	400
sr	mg kg ⁻¹	102.82	103.57	101.5				103.9588443	104.6559829			103	102
Та	mg kg ⁻¹			0.0322		<u> </u>		0.0254	0.0276			0.029	0.028
Tb	mg kg ⁻¹	0.32	0.32	0.331				0.306325064	0.30826797			0.301	0.304
Te	mg kg ⁻¹												
Th	mg kg-1			0.0268		t i		i				0.018	0.022
<u>т</u>	ma ka-1					l	-	<u> </u>					
	ing Ng	0.00	0.00	0.007				0.00707444	0.212426000			0.007	0.01
1110	mg kg ⁻¹	0.22	0.22	0.237				0.20787441	0.212436008			0.207	0.21
U	mg kg ⁻¹			0.03		ļ		0.00528	0.00673			0.038	0.008
v	mg kg ⁻¹	292.51	292.64	312.4				323.122027	322.3305661			313	311
w	mg kg ⁻¹							0.210218072	0.219403522			0.248	0.22
Y	mg kg ⁻¹	13.66	13.7	13.8				13.55458003	13.72034655			13.12	13.25
Yb	mg ka-1	1.53	1.52	1.55		1		1,470513421	1,483406585			1.41	1,474
7.	maluet	72.07	70.02			 		80.05717554	92 34172704			77.7	70.2
-	mg Kg ⁻	12.21	12.33			l		00.90/1/054	02.341/3/84			11.1	19.2
Zr	mg kg ⁻¹	12.8	12.65	13.2	1	1	1	12./2652978	12.98301349		1	12.44	12.6

Lab C	da	K58A	K58B	K59A	K 50B	K61A	K61B	K62A	K62B				-
Lab Co		47.245	47.214	47	46.02	42.51	KOID	47.50	47.06	•	-	-	-
5102	g 100g-1	47.345	47.314	47	46.93	43.51		47.52	47.20				
102	g 100g-1	0.911	0.91	0.9	0.9	1.02							
AI2O3	g 100g-1	11.154	11.201	15.08	15.18	16.84		15.226	15.575				
Fe2O31	g 100g-1	11.154	11.2	11.19	11.24	12.45		10.39	10.33				
MgO	g 100g-1	10.737	10.773	10.51	10.51	11.03		10.5395	10.4799				
CaO	g 100g-1	12.951	19.984	12.81	12.77	14.62		13.142	13.183				
Na2O	g 100g-1	1.694	1.685	1.75	1.76	1.79		1.791	1.801				
К2О	g 100g-1	0.027	0.02	0.02	0.02								
P2O5	g 100g-1	0.026	0.019	0.02	0.02								
Ag	mg kg ⁻¹												
As	mg kg ⁻¹												
Au	mg kg ⁻¹												
в	mg kg ⁻¹												
Ва	mg kg ⁻¹	6.1	6.1					5.875	5.715				
Be	mg kg ⁻¹												
Bi	mg kg ⁻¹												
Cd	mg kg ⁻¹												
Ce	mg kg ⁻¹	1.74	1.73					1.742	1.726				
сі	mg kg ⁻¹												
Co	mg kg-1	60.4	60.2					56.35	56.02				
Cr	mg kg ⁻¹	532.9	531					546.4	544.2				
Cs	mg kg ⁻¹												
Cu	mg kg ⁻¹	112	98					111.6	112.1				
Dv	mg kg-1	2.3	2.3					2,424	2,437				
Er	mg kg ⁻¹	1.4	1.5					1.597	1.677				
Eu	mg kg ⁻¹	0.5	0.5					0.487	0.452				
F	ma ka-1												
Ga	ma ka-1	13.4	13.3			ł		14.84	14.87				
Gd	ma ka-1	1.6	1.7					1.686	1.733				
Ge	ma ka-1												
Hf	ma ka-1	0.6	0.6					0.518	0.556				
Но	ma ka-1	0.5	0.5					0.518	0.549				
In	ma ka-1	0.0	0.0					0.010	0.010				
	ma ka-1	0.56	0.56					0.554	0.563				
11	ma ka-1	31	3										
	ma ka-1	0.2	0.2			ł		0.236	0.248				
Mn	ma ka-1	1454.6	1475.8	0.13	0.13			1474.15	1462.04				
Mo	ma ka-1												
Nb	ma ka-1	0.49	0.49					0.5105	0 498				
Nd	mg kg ⁻¹	2.1	2.3					2.313	2.338				
Ni	mg kg ⁻¹	236.3	230.8					237.3	236.3				
Pb	ma ka-1	0.26	0.3										
Pr	ma ka-1	0.35	0.35			ł		0.348	0.371				
Rh	ma ka-1	0.18	0.18										
Re	ma ka-1	0.10	0.10										
s	mg ka-1												
Sb	mg ka-1												
Sc	ma ka-1	42	42.8					40.94	42 56				
Se	ma ka-1	72	72.0						72.00				
Sm	ma ka-1	1	11					0.996	0.965				
Sn	ma ka-1	·						0.000	0.000				
6r	ma ka-1	111.2	111.6					112.3	111.8				
Та	ma ka-1	0.04	0.04					112.0	111.0				
ть	9 h9	0.04	0.04					0.331	0.345				
То	ma ka-1	0.5	0.5					0.001	0.545				
ть	9 %9	0.03	0.03										
т.	9 hg	0.03	0.03										
Tm	ma ka-1	0.2	0.2					0.2100	0 2321				
	ma ka-1	0.2	0.2					0.2100	0.2321				
v	ma ka-1	346.6	345.7					300.5	305.1				
w	ma ka-1	340.0	343.7					309.3	000.1				
v	ma ka-1	12.0	12.9					13.10	13 99				
yh	ma ka-1	12.9	12.0					1 507	1 /02				
70	ma ka-1	80.0	1.0					1.JZ/ 81.0	80.4				
Z:1 7r	mg kg 1	11 0	10					12.04	12.49				
1 4 1	rng kg ⁻	11.9	12	1	1	1	1	13.04	13.40	1			

	Designated Value	Uncertainty of designated value	Horwitz Quality	Horwitz Target Precision	Uncertainty/ Target Precision	Number of reported results	Robust Mean of results	Robust SD of results	Median of results	Status of designated value	Type of designated value
	X _{pt}	u(<i>x_{pt}</i>)	k x 0.01	σ_{pt}	u(x _{pt})/σ _{pt}	п					
	g 100g-1	g 100g-1		g 100g-1			g 100g-1	g 100g-1	g 100g-1		
SiO2	47.28	0.1261	1	0.5293	0.2382	28	47.44	0.7515	47.28	Assigned	Median
TiO2	0.8911	0.007392	1	0.01813	0.4076	28	0.8893	0.03488	0.8911	Provisional	Median
AI2O3	15.3	0.06999	1	0.203	0.3448	30	15.3	0.3833	15.3	Assigned	Robust Mean
Fe2O3T	11.21	0.105	1	0.1559	0.6735	28	11.41	0.4179	11.37	Assigned	Mode
MgO	10.59	0.05831	1	0.1484	0.3929	29	10.5	0.4804	10.59	Assigned	Median
CaO	12.88	0.06079	1	0.1753	0.3468	27	12.83	0.349	12.88	Assigned	Median
Na2O	1.725	0.01693	1	0.03178	0.5327	29	1.725	0.09117	1.72	Assigned	Robust Mean
K20	0.02	0.0006022	1	0.0007207	0.8356	18	0.02031	0.002371	0.02	Provisional	Median
	mg kg-1	mg kg-1		mg kg ⁻¹	0.4500		mg kg ⁻¹	mg kg ⁻¹	mg kg-1		
Ва	5.893	0.05496	1	0.3609	0.1523	24	5.893	0.2692	5.898	Assigned	Robust Mean
Ве	0.0885	0.00749	1	0.0102	0.7346	8	0.1018	0.02381	0.0925	Provisional	Mode
Ce	1.710	0.01439	1	0.1200	0.1137	25	1.710	0.07197	1.72	Assigned	Robust Mean
C0 C1	526	0.922	1	2.474	0.3727	22	57.44	2.095	526	Assigned	Modion
	112.4	0.433	1	10.05	0.3203	24	114.6	0.212	114.2	Assigned	Modo
	2 385	2.85	1	4.45	0.3585	24	2 308	0.1808	2 338	Assigned	Mode
Fr	1 55	0.02625	1	0.1074	0.2262	24	1 55	0.1286	1 582	Assigned	Robust Mean
Eu	0 4784	0.005838	1	0.04276	0.1365	24	0 4784	0.0286	0.4798	Assigned	Robust Mean
Ga	15	0.223	1	0 7982	0.2794	21	14 79	0.8766	15	Assigned	Median
Gd	1 71	0.027	1	0 1261	0.2141	24	1 664	0 1187	1 678	Assigned	Mode
Ge	1.44	0.08916	1	0.109	0.8178	13	1.508	0.2842	1.44	Provisional	Median
Hf	0.51	0.015	1	0.04514	0.3323	23	0.5228	0.05924	0.5172	Assigned	Mode
Но	0.5088	0.009843	1	0.04505	0.2185	24	0.5126	0.04086	0.5088	Assigned	Median
In	0.05268	0.001248	1	0.006562	0.1901	11	0.05268	0.004138	0.05259	Assigned	Robust Mean
La	0.5413	0.006382	1	0.04749	0.1344	25	0.5396	0.03026	0.5413	Assigned	Median
Li	2.948	0.0575	1	0.2004	0.2869	18	3.064	0.288	2.988	Assigned	Mode
Lu	0.221	0.004667	1	0.02218	0.2104	24	0.221	0.02286	0.2263	Assigned	Robust Mean
Mn	1321	20.86	1	35.84	0.5821	25	1321	104.3	1322	Provisional	Robust Mean
Мо	0.1636	0.009403	1	0.01718	0.5472	15	0.1636	0.03642	0.165	Provisional	Robust Mean
Nb	0.4764	0.00661	1	0.0426	0.1552	24	0.4764	0.03238	0.4788	Assigned	Robust Mean
Nd	2.164	0.02497	1	0.1541	0.162	25	2.164	0.1249	2.17	Assigned	Robust Mean
Ni	236	1.59	1	8.294	0.1917	24	239	11.43	236.9	Assigned	Mode
Pr	0.336	0.004992	1	0.03167	0.1577	25	0.336	0.02496	0.3379	Assigned	Robust Mean
Rb	0.1769	0.004115	1	0.01836	0.2241	20	0.1743	0.01576	0.1769	Assigned	Median
Sc	41.75	0.3925	1	1.904	0.2061	23	42.11	1.747	41.75	Assigned	Median
Sm	0.9971	0.01157	1	0.07978	0.145	24	0.9971	0.05669	0.9975	Assigned	Robust Mean
Sr	104.5	1.024	1	4.152	0.2466	24	105.2	4.614	104.5	Assigned	Median
Та	0.03115	0.001115	1	0.004199	0.2655	16	0.03159	0.004769	0.03115	Assigned	Median
Tb	0.3165	0.005179	1	0.0301	0.1721	24	0.3165	0.02537	0.32	Assigned	Robust Mean
Th	0.02157	0.000635	1	0.003073	0.2066	20	0.02276	0.003817	0.0225	Provisional	Mode
Tm	0.2212	0.005405	1	0.0222	0.2435	24	0.2187	0.02036	0.2212	Assigned	Median
U	0.01	0.001	1	0.0016	0.6252	20	0.01208	0.004885	0.01025	Provisional	Mode
v	303.7	2.743	1	10.28	0.2669	23	303.7	13.15	304	Assigned	Robust Mean
w	0.2174	0.00539	1	0.02188	0.2464	11	0.2123	0.0194	0.2148	Provisional	Mode
Y	13.8	0.244	1	0.7436	0.3281	25	13.43	1.134	13.64	Assigned	Mode
Yb	1.518	0.02201	1	0.114	0.1931	24	1.492	0.1063	1.518	Assigned	Median
Zn	/5.38	1.793	1	3.146	0.5698	23	/5.38	8.597	/6.1	Provisional	Robust Mean
Zr	12.81	0.1859	1	0.6978	0.2664	24	12.81	0.9107	12.95	Assigned	Robust Mean

Table 2 - G-Probe 29 Designated values and statistical summary for MORB-type Basalt, KBMO-1G Glass.

Lab Code	K3	K4	K7	K10	K11	K12	K14	K15	K16	K17	K20	K21	K28
SiO2: 1	-0.47	-0.73	*	0.86	-2.43	-0.15	-0.10	0.39	0.91	*	*	-0.08	-6.35
TiO2: 1	0.66	-0.33	*	0.00	3.25	-2.48	2.15	-8.33	1.05	-3.37	*	-1.41	-6.40
AI2O3: 1	0.81	-0.49	*	-1.20	2.42	-2.31	0.57	-12.93	0.79	1.75	*	-1.70	-8.47
Fe2O3T: 1	1.36	6.00	*	2.28	0.67	3.48	-0.77	2.89	0.67	1.15	*	-1.18	*
MgO: 1	-0.71	2.45	*	0.87	2.79	0.00	-0.75	-22.41	0.84	-7.38	*	0.01	-6.41
CaO: 1	0.64	-0.71	*	0.51	2.71	0.14	0.97	-8.27	0.43	-2.74	*	-1.61	-7.62
Na2O: 1	-0.37	5.35	*	2.36	-4.87	-0.85	-3.30	-0.94	-0.15	-1.25	*	-0.85	-1.57
K2O: 1	*	*	*	2.22	-1.39	-1.39	*	*	-0.69	0.00	*	3.47	*
Ba: 1	*	0.34	0.24	-0.18	*	-0.81	*	-2.61	0.37	-0.41	0.57	*	-1.63
Be: 1	*	*	0.64	0.00	*	*	*	*	*	*	*	*	*
Ce: 1	*	0.07	1.06	0.15	0.56	-0.13	*	-1.95	0.40	-0.72	0.03	*	-1.35
Co: 1	*	-0.30	0.75	0.77	-2.46	0.41	*	1.48	1.26	0.00	*	*	-1.53
Cr: 1	*	2.55	0.93	0.05	-0.17	1.71	*	-3.51	0.79	-0.93	*	*	-2.37
Cu: 1	*	0.70	3.06	0.43	-4.13	0.73	*	-0.09	3.06	-0.65	*	*	-1.15
Dy: 1	*	0.00	0.30	-0.23	0.51	-0.51	*	-2.30	0.22	-1.37	1.52	*	-1.91
Er: 1	*	0.56	0.73	0.28	1.02	0.43	*	-1.59	0.56	-0.95	1.98	*	-1.25
Eu: 1	*	-0.43	0.50	0.19	1.39	0.04	*	-1.13	0.50	-0.55	1.44	*	-1.13
Ga: 1	*	0.88	*	0.70	-2.63	0.08	*	-0.50	0.94	-0.69	*	*	-0.98
Gd: 1	*	-0.27	-0.43	0.20	0.10	0.24	*	-2.37	0.14	-1.30	1.03	*	-1.70
Ge: 1	*	*	*	2.54	-1.44	*	*	*	-0.79	7.11	*	*	-1.79
Hf: 1	*	0.00	0.44	0.16	2.53	0.00	*	-1.55	0.41	*	2.22	*	-1.12
Ho: 1	*	0.47	1.36	0.08	1.38	-0.20	*	-1.53	0.48	-0.75	1.58	*	-1.21
In: 1	*	*	*	0.25	-0.10	*	*	0.35	0.73	*	-0.41	*	-1.17
La: 1	*	0.29	0.71	0.20	0.81	-0.03	*	-1.92	0.11	-0.66	0.60	*	-1.24
Li: 1	*	*	2.83	-0.34	*	-0.24	*	*	0.14	-0.17	*	*	-1.56
Lu: 1	*	0.63	0.63	0.21	1.76	0.41	*	-1.17	0.27	-0.72	1.76	*	-1.01
Mn: 1	-2.01	0.78	4.45	1.05	-1.64	1.21	9.13	-4.00	-0.14	-0.12	*	-4.24	-2.77
Mo: 1	*	*	0.08	-0.02	3.81	-0.79	*	*	0.37	-2.54	0.37	*	0.40
Nb: 1	*	0.91	-0.62	0.07	0.70	-0.38	*	-0.27	0.65	-0.74	1.02	*	-1.08
Nd: 1	*	0.91	0.49	0.35	0.41	-0.03	*	-2.01	0.62	-0.87	1.01	*	-1.42
Ni: 1	*	2.23	3.92	1.56	-2.69	0.53	*	1.87	3.66	-0.18	*	*	-1.97
Pr: 1	*	0.44	1.23	0.06	1.23	-0.19	*	-1.77	0.27	-0.82	-0.19	*	-1.29
Rb: 1	*	14.87	0.17	-0.10	0.11	-0.92	*	*	-0.10	-0.65	*	*	-1.41
Sc: 1	*	-0.18	-0.71	0.38	1.34	0.45	*	-0.44	0.53	8.90	*	*	-1.58
Sm: 1	*	0.60	0.73	0.33	-0.06	0.41	*	-2.41	0.52	-0.78	0.54	*	-1.31
Sr: 1	*	0.12	2.04	0.81	1.10	-0.19	*	-2.94	0.69	-1.04	*	*	-2.54
Ta: 1	*	*	0.92	0.04	1.87	*	*	*	0.44	*	*	*	-1.11
Tb: 1	*	0.12	0.78	0.16	1.31	-0.22	*	-1.54	0.47	-0.88	1.11	*	-1.20
Th: 1	*	*	-0.51	0.73	2.09	-0.51	*	-0.51	0.63	-0.51	*	*	-0.84
Tm: 1	*	0.17	0.40	0.05	1.71	-0.05	*	-1.63	0.49	-0.73	1.75	*	-1.20
U: 1	*	*	0.00	-0.47	5.00	0.00	*	*	1.25	3.13	*	*	-1.88
V: 1	*	-0.65	0.03	0.04	-1.44	1.18	*	-2.74	-0.14	-0.31	*	*	-2.49
W: 1	*	*	*	0.13	0.39	*	*	-1.94	-0.43	*	*	*	-0.89
Y: 1	*	0.67	1.21	0.19	2.00	-0.24	*	-2.65	0.81	-1.64	2.08	*	-2.06
Yb: 1	*	0.29	0.20	0.11	0.83	-0.15	*	-1.69	0.18	-1.16	2.04	*	-1.47
Zn: 1	*	0.50	-1.70	-2.91	-3.61	2.23	*	-1.59	-2.19	0.76	*	*	-2.46
Zr: 1	*	0.99	0.35	0.36	3.82	0.39	*	-2.42	0.99	-1.05	3.45	*	-1.55

Lab Code	K30	K31	K34	K35	K36	K37	K38	K41	K45	K46	K48	K50	K51
SiO2: 1	0.40	*	-0.12	1.87	2.77	4.75	1.54	7.17	0.41	-0.72	*	1.62	-0.38
TiO2: 1	1.05	*	1.60	-1.77	-1.16	0.49	-0.44	-1.56	-1.16	-0.00	*	-1.44	-0.17
AI2O3: 1	0.47	3.45	0.05	0.29	0.00	-2.95	-0.09	5.43	-0.36	2.07	*	-0.83	-0.26
Fe2O3T: 1	1.09	*	13.37	-1.29	4.11	-2.02	0.87	-7.75	1.76	4.57	*	1.19	-0.19
MgO: 1	-1.25	-13.99	2.99	-5.81	*	-0.58	0.60	-8.89	0.23	-0.06	*	0.06	0.81
CaO: 1	0.63	*	-4.19	-0.44	*	-1.28	0.40	-0.06	0.00	-0.82	*	-1.63	0.13
Na2O: 1	0.32	9.76	-16.52	-1.92	*	-3.93	1.11	2.43	2.21	-7.67	*	2.99	-0.03
K20: 1	20.81	*	2.78	0.00	*	*	*	2.08	-1.39	-2.78	*	0.00	-6.94
Ba: 1	-0.27	5.59	1.02	0.17	0.55	*	*	-0.14	0.38	0.42	1.24	-0.81	-0.67
Be: 1	-0.34	*	*	-1.32	*	*	*	3.89	0.15	2.65	6.23	*	*
Ce: 1	-0.76	-0.52	2.83	0.42	0.28	*	*	-0.31	0.38	-0.11	1.55	-0.29	-0.16
Co: 1	-0.31	*	1.24	-0.34	0.10	*	*	1.20	0.25	-0.15	-0.63	-0.31	*
Cr: 1	-1.38	-1.65	0.78	-0.05	1.53	*	*	1.04	2.55	0.22	-1.11	-0.05	-0.66
Cu: 1	-0.54	13.17	-1.87	0.00	2.16	*	*	0.56	3.10	-1.54	-1.21	0.77	-2.61
Dy: 1	-1.91	*	-3.38	-1.33	-0.24	*	*	-1.24	0.18	0.41	1.08	-0.33	0.27
Er: 1	-1.85	*	-3.27	-0.77	-0.39	*	*	-0.77	0.34	0.64	2.71	0.22	1.03
Eu: 1	-0.43	*	-1.37	-0.01	0.35	*	*	-0.44	0.39	0.13	1.91	0.04	-0.08
Ga: 1	0.31	-1.06	-2.34	-0.09	0.00	*	*	0.60	1.01	-1.82	0.48	0.39	*
Gd: 1	-1.58	*	-3.09	-1.24	-0.27	*	*	-1.12	0.44	0.64	0.85	-0.23	0.40
Ge: 1	2.11	*	0.00	1.59	*	*	*	1.16	-4.63	-0.03	4.65	*	*
Hf: 1	-0.78	*	-2.79	-0.42	0.33	*	*	-0.39	0.33	1.12	3.28	-0.22	1.79
Ho: 1	-0.75	*	-0.77	-0.75	0.49	*	*	-0.61	0.25	0.48	2.39	-0.08	0.60
In: 1	*	*	*	*	*	*	*	-0.01	-0.41	0.81	0.47	*	*
La: 1	-0.34	-0.87	-3.84	-0.07	0.00	*	*	-0.32	0.29	0.54	2.16	-0.55	-0.03
Li: 1	0.26	6.89	-0.14	-0.67	0.56	*	*	0.44	2.58	*	1.27	-0.52	25.21
Lu: 1	-0.72	*	-2.12	-0.32	0.29	*	*	-0.78	0.41	-4.42	2.33	0.41	0.45
Mn: 1	*	-2.63	-0.18	-0.54	2.04	*	*	1.35	0.57	-2.77	*	1.09	-36.87
Mo: 1	2.41	*	*	*	*	*	*	-1.31	1.24	3.46	-2.49	*	-2.77
Nb: 1	-1.56	*	-2.07	-0.34	0.20	*	*	-0.38	0.91	0.11	1.02	0.20	0.04
Nd: 1	-0.97	-0.55	0.04	-0.82	0.23	*	*	-0.59	0.56	0.54	2.27	-0.51	-0.61
Ni: 1	0.00	0.36	-0.24	-0.66	1.69	*	*	1.82	0.15	-0.76	-0.42	0.03	-1.33
Pr: 1	-0.98	-0.50	2.02	-0.28	0.08	*	*	-0.58	0.28	0.38	0.90	0.13	-0.41
Rb: 1	-1.46	*	-2.45	-0.05	0.11	*	*	0.05	0.71	-0.81	1.93	*	0.22
Sc: 1	-1.94	*	0.71	-0.89	-0.21	*	*	1.14	-0.08	1.27	7.56	-0.31	-0.08
Sm: 1	-0.90	*	0.91	-0.63	-0.03	*	*	-0.80	0.10	0.41	2.06	0.04	-0.21
Sr: 1	-0.25	-0.12	-0.61	0.53	0.48	*	*	0.05	-0.90	0.49	2.04	-0.32	-0.73
Ta: 1	-0.27	*	-4.08	-0.27	0.32	*	*	-0.51	*	-0.04	1.63	*	0.25
Tb: 1	-0.71	*	-0.85	-0.75	0.62	*	*	-0.59	0.28	0.38	1.77	0.12	0.48
Th: 1	-0.51	-0.51	0.14	0.47	1.12	*	*	-1.45	1.28	0.95	2.74	*	1.70
Tm: 1	-0.95	*	-2.89	-0.73	0.49	*	*	-0.73	0.29	0.17	2.02	-0.05	0.71
U: 1	0.00	12.50	-0.63	4.38	1.88	*	*	-2.35	0.31	0.31	-0.09	*	12.50
V: 1	-0.70	*	0.90	0.76	-0.80	*	*	0.87	-1.42	1.53	-0.70	-1.08	0.85
W: 1	0.12	*	*	*	0.80	*	*	-0.21	*	-4.07	*	*	*
Y: 1	-2.08	-4.10	-2.56	-2.02	0.27	*	*	-1.40	0.69	-0.12	0.67	-0.16	0.00
Yb: 1	-1.43	*	-2.52	-1.02	-0.33	*	*	-0.81	0.15	0.14	2.96	0.07	0.29
Zn: 1	0.66	10.65	6.49	-3.58	-0.92	*	*	2.28	-3.28	-0.51	0.23	-0.98	*
Zr: 1	-0.80	*	-2.30	-1.48	-0.51	*	*	-0.81	1.07	1.52	1.00	-0.12	0.56

Table 3 - G-Probe 29 Z-scores for MORB-type Basalt, KBMO-1G Glass. 18/12/202
--

Lab Code	K53	K55	K56	K57	K58	K59	K61	K62
SiO2: 1	-0.63	2.45	-0.08	-0.10	0.08	-0.60	-7.13	0.20
TiO2: 1	1.05	-1.31	3.25	0.05	1.07	0.49	7.11	*
AI2O3: 1	-1.25	-0.48	0.05	1.16	-20.31	-0.83	7.59	0.50
Fe2O3T: 1	-0.71	4.42	0.64	-1.06	-0.24	0.00	7.92	-5.48
MgO: 1	14.14	1.98	0.70	-2.67	1.14	-0.51	2.99	-0.51
CaO: 1	-72.45	*	1.11	-1.11	20.49	-0.48	9.95	1.64
Na2O: 1	-1.10	-0.31	4.41	0.18	-1.11	0.95	2.05	2.24
K2O: 1	13.88	-24.92	*	1.73	4.86	0.00	*	*
Ba: 1	*	-0.61	*	-0.47	0.57	*	*	-0.27
Be: 1	*	*	*	*	*	*	*	*
Ce: 1	*	0.02	*	-0.42	0.15	*	*	0.14
Co: 1	*	0.66	*	0.51	1.41	*	*	-0.25
Cr: 1	*	-0.48	*	0.21	-0.24	*	*	0.56
Cu: 1	*	0.35	*	2.93	-1.89	*	*	-0.35
Dy: 1	*	-0.56	*	-1.19	-0.51	*	*	0.27
Er: 1	*	0.27	*	-0.27	-0.86	*	*	0.75
Eu: 1	*	0.03	*	-0.52	0.50	*	*	-0.21
Ga: 1	*	0.15	*	*	-2.07	*	*	-0.18
Gd: 1	*	-0,10	*	-0.39	-0.47	*	*	0.00
Ge 1	*	-1 07	*	*	*	*	*	*
Hf- 1	*	-0.55	*	-0 64	1 99	*	*	0.60
Но. 1	*	_0 14	*	-0 31	-0.20	*	*	0.55
In: 1	*	-0.74	*	*	*	*	*	*
	*	0.00	*	-0 27	0.39	*	*	0.36
	*	0.00	*	*	0.53	*	*	*
	*	_0.05	*	-0 47	-0 95	*	*	0 95
	*	-0.05	*	-0.47	-0.90	-36.97	*	0.95 1 00
WIN: 1	*	1.02	*	v.59 *	4.U1 *	-30.07	*	4.09 *
WO: 1	*	-1.31	*	0.50	0.00	*	*	0.05
	*	-0.18	*	0.00	0.32	*	*	
Nd: 1	Ĵ	0.00	*	-0.30	0.23	÷	*	1.05
NI: 1	Ĵ	0.64	*	0.13	-0.30	• •	*	0.10
Pr: 1	Ĺ	-0.35	^ +	-0.60	0.44		*	0.74
Rb: 1		-0.45	*	0.63	0.17	*	*	*
Sc: 1		0.65	×	-0.34	0.34	*	*	0.00
Sm: 1		-0.03	*	-0.53	0.66	*	*	-0.21
Sr: 1		-0.05	*	-0.49	1.66	*	*	1.81
Ta: 1	*	-1.11	*	-0.63	2.11	*	*	*
Tb: 1	*	-0.30	*	-0.46	-0.55	*	*	0.72
Th: 1	*	*	*	-0.51	2.74	*	*	*
Tm: 1	*	-0.50	*	-0.57	-0.95	*	*	0.22
U: 1	*	-2.50	*	8.13	0.00	*	*	*
V: 1	*	1.85	*	0.81	4.13	*	*	0.35
W: 1	*	-0.12	*	0.76	*	*	*	*
Y: 1	*	-0.22	*	-0.83	-1.28	*	*	-0.36
Yb: 1	*	-0.36	*	-0.66	0.72	*	*	-0.07
Zn: 1	*	1.99	*	0.97	4.44	*	*	1.82
Zr: 1	*	0.07	*	-0.41	-1.23	*	*	0.64

K12

46

K50 K51

K57 K41

LA-ICP-MS 🔴 EPMA

0.9

0.6 K15

K28 K30 K17 K31

2.01

1.93

Figure 1: G-Probe 29 - MORB-type Basalt, KBMO-1G Glass. Data distribution charts for elements for which values were assigned or provisional values given for guidance. Horizontal lines show the limits for -2<z<2 where the z-score is derived according to the Quality specified.

7 = -2

-7=2

-z=0

-z = -2

<11 <20

28

34

Ş

Figure 2: G-Probe 29 - MORB-type Basalt, KBMO-1G Glass. Data distribution charts provided for information only for elements for which values could not be credited with assigned or provisional status.

Multiple	7-Score	Chart for	G-Probe 29
wuutipie	2-00016	Chartion	G-FIODE 23

SiO2	•	•		•	•	•	•	•	•			•	•		•	•			•		•	•		•	•	•		•	•	•
TiO2	•	•		•		•		•	•	•		▼	•		•	•	•	•	٠	•	•	•		•	•	•	•		•	•
AI2O3	•	•		•		•	•	•	•	٠		•	•		•	•	•	•	•		•			•	•	•	•	•	•	•
Fe2O3T	•				•		•		•	٠			•			•		•	٠	•	•			•	•	•		•	•	•
MgO	•			•		•	•	•	•	•		•	•	•		•		•	٠	•	•	•		•	•		•	•	•	•
CaO	•	•		•		٠	•	•	•	•		▼	•		•	•		•	٠	•	•	•		•	•	•		•	•	
Na2O	•				•	٠	•	•	•	٠		•	•		•	•		•	٠			•			•	•	•		•	•
К2О					•	٠			•	٠						•					•	•		•	•		•		•	
Ва		•	•	•		٠		•	•	٠	•	•	•		•	•	•			•	•	•	•	•	•		•		•	•
Ве			•	•									•			•					•									
Ce		•	•	•	•	٠		•	•	٠	•	•	•	٠		•	•			•	•	•	•	•	•		•		•	•
Co		•	•	•	•	٠		•	•	٠		•	•		•	•	•			•	•	•	•	•			•		•	•
Cr			•	•	٠	٠		•	•	٠		•	•	•	•	•	٠			•		•	•	•	•		•		•	•
Cu		•		•	•	٠		•		٠		•	•		•	•				•		•	•	•	•		•			•
Dy		•	•	•	•	٠		•	•	٠	•	•	•		•	•	•			•	•	•	•	•	•		•		•	•
Er		•	•	•	•	•		•	•	•	•	•	•		•	•	•			•	•	•		•	•		•		•	•
Eu		•	•	•	•	•		•	•	•	•	•	•		•	•	•			•	•	•	•	•	•		•		•	•
Ga		•		•	•	٠		•	•	٠		•	•	٠	•	•	•			•	•	•	•	•			•			•
Gd		•	•	•	•	•		•	•	•	•	•	•		•	•	•			•	•	•	•	•	•		•		•	•
Ge					•				•			•			•	•				•	•	•					•			
Hf		•	•	•		٠		•	•			•	•		•	•	•			•	•	•		•	•		•		•	•
Но		•	•	•	•	•		•	•	•	•	•	•		•	•	•			•	•	•		•	•		•		•	•
In				•	٠			•	•		•	•								•	•	•	•				•			
La		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•			•	•	•		•	•		•		•	•
Li				•		٠			•	٠		•	•		•	•	٠			•			•	•			•			•
Lu		•	•	•	•	٠		•	•	٠	•	•	•		•	•	•			•	•	•		•	•		•		•	•
Mn	•	٠		•	•	٠		▼	•	٠		•		•	•	•				•	•	•		•	▼		٠		•	
Мо			•	•		٠			•	•	•	•								•	•		•		•		٠			
Nb		٠	•	•	•	٠		•	•	٠	•	•	•		•	•	•			•	•	•	•	•	•		٠		•	•
Nd		٠	٠	٠	•	٠		•	•	٠	•	•	•	٠	•	٠	•			•	•	•		•	•		٠		•	•
Ni			•	٠	•	٠		٠		٠		•	•	٠	•	٠	•			•	•	•	•	•	•		٠		•	•
Pr		٠	٠	•	٠	٠		•	•	٠	•	•	•	٠	•	•	٠			٠	•	٠	•	•	•		٠		•	•
Rb			٠	٠	٠	٠			•	٠		•	•		•	٠	٠			٠	•	٠	٠		•		٠		•	•
Sc		٠	٠	٠	•	٠		٠	•			•	•		•	٠	٠			•	•	٠		•	•		٠		•	•
Sm		•	٠	٠	٠	٠		•	•	٠	٠	•	•		٠	٠	٠			٠	•	٠	•	٠	•		٠		•	•
Sr		•	•	٠	٠	٠		•	٠	٠		•	•	•	•	•	٠			•	•	•	•	٠	•		•		•	•
Та			•	•	٠				•			•	•		•	٠	٠			٠		٠	•		•		٠		•	
Tb		•	٠	٠	٠	٠		٠	•	٠	٠	•	•		٠	٠	٠			٠	•	٠	٠	٠	•		٠		•	•
Th			٠	٠	•	٠		٠	•	٠		•	•	•	٠	٠	٠			٠	•	٠			•				•	•
Tm		•	٠	٠	٠	٠		٠	•	٠	٠	•	•		•	٠	٠			٠	•	٠		٠	•		٠		•	•
U			٠	٠		٠			•			•	•		•	•	٠			•	•	٠	•				•			•
V		٠	٠	٠	٠	٠		•	•	٠		•	•		٠	٠	٠			•	•	٠	•	•	٠		٠		•	
W				•	•			•	•			•	•				•			•		▼					•		•	
Y		٠	٠	٠		•		•	•	•		•	•	•	•	•	٠			•	•	٠	٠	٠	•		•		•	•
	K3	Х4	K7	K10	K11	K12	K14	K15	K16	K17	K20	K28	K30	K31	K34	K35	K36	K37	K38	K41	K45	K46	K48	K50	K51	K53	K55	K56	K57	K58

Yb		•	•	•	•	•		•	•	•		•	•		•	•	•			•	•	•		•	•		•		•	•
Zn		•	•	•	•	•		•	•	•		•	•			•	•				•	•	•	•			•		•	•
Zr		•	•	•		•		•	•	•		•	•		•	•	•			•	•	•	•	•	•		•		•	•
	K3	К 4	K7	K10	K11	K12	K14	K15	K16	K17	K20	K28	K30	K31	K34	K35	K36	K37	K38	K41	K45	K46	K48	K50	K51	K53	K55	K56	K57	K58

Figure 3: G-Probe 29 - MORB-type Basalt, KBMO-1G Glass. Multiple z-score charts for laboratories participating in the G-Probe 29 round. Symbols indicate whether or not an elemental result complies with the -2 < z < +2 criteria (see key).

SiO2	•	•	•			z > 3
TiO2	•					2 < z < 3
AI2O3	•		•		•	ОК
Fe2O3T	•		•			-3<7<-2
MgO	•	•	•		Ż	-0 - 2 - 2
CaO	•		•		•	z < -3
Na2O	•	•	•	L		No data
K2O	•					
Ва	П	П	•			
Be						
Се	П	П	•			
Со			•			
Cr	П	П	•			
Cu			•			
Dy	П	П	•			
Er	П	П	•			
Eu	П	П	•			
Ga	Π	Π	•			
Gd			•			
Ge	П	Π	Π			
Hf			٠			
Но	Π	Π	•			
In						
La	Π	Π	•			
Li						
Lu	П	П	•			
Mn	•		•			
Мо	Π	Π	Π			
Nb			•			
Nd	П	П	•			
Ni			•			
Pr	Π	Π	•			
Rb						
Sc	Π	Π	•			
Sm	П	Π	•			
Sr _	П	Π	•			
la T						
			•			
Th T		П				
im			•			
U		11	-			
V			•			
vv			-			
T			•	I		
	K59	K61	K62			

Yb	n n •
Zn	
Zr	Π Π •
	X62 X62

Figure 3: G-Probe 29 - MORB-type Basalt, KBMO-1G Glass. Multiple z-score charts for laboratories participating in the G-Probe 29 round. Symbols indicate whether or not an elemental result complies with the -2<z<+2 criteria (see key).