

G-Probe 30 – an International Proficiency Test for Microanalytical Laboratories Report on Round 30 (Limestone, KCLs-1NP, Nano-particulate powder pellet) / November 2024

Dieter Garbe-Schönberg^{1*}, Peter C. Webb², Jay M. Thompson³, and Philip J. Potts²

 ¹CAU Kiel University, Institute of Geosciences, Ludewig-Meyn-Strasse 10, 24098 Kiel, Germany.
 ² Retired from the Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
 ³ U.S. Geological Survey, Geology, Geophysics & Geochemistry Science Center, Denver Federal Centre, Denver, CO 80225, USA
 *Corresponding author, Dieter Garbe-Schönberg: e-mail dieter.garbe-schoenberg@ifg.uni-kiel.de

Keywords: proficiency testing, quality assurance, microanalysis, G-Probe 30, Limestone KCLs-1NP, nano-particulate powder pellet

Abstract

Results are presented for Round 30 of the G-Probe Proficiency Testing programme for microanalytical laboratories, organised by the International Association of Geoanalysts (IAG). The test material distributed in this round of G-Probe was a fortified limestone from Mongolia (Limestone KCLs-1NP) prepared as nanoparticulate powder pellets at Kiel University. In this report, the data contributed by 24 laboratories are listed, together with an assessment of consensus values as composition location estimators, consequent zscores, and a series of charts showing the distribution of contributed results that reveal the overall performance of participating laboratories. Assigned values were conferred for 32 elements, and provisional values for a further 21 out of 62 elements reported. For a further 5 elements, too few results were reported to determine their status; these are shown graphically for information. Only 1 or 2 values were reported for each of the remaining 4 elements, which are not plotted.

Introduction

This thirteenth round of G-Probe, the international proficiency testing programme for microanalytical laboratories, was conducted in a similar manner to

recent rounds. The programme is organised by the IAG and conforms with the published G-Probe Protocol (IAG, 2020).

The overall aim of the programme is to provide participating laboratories with *z*-score information for their reported measurement results so that each laboratory can decide whether the quality of their data is satisfactory in relation both to the G-Probe fitnessfor-purpose criterion and to the results submitted by other laboratories contributing to the round. In circumstances where *z*-scores are unsatisfactory, a participating laboratory is encouraged to investigate its procedures for unsuspected analytical bias and to take corrective action if this appears justified. The programme is designed to be part of the routine quality assurance procedures employed by microanalytical geochemistry laboratories.

G-Probe Steering Committee:

D. Garbe-Schönberg (principal organiser), P.C. Webb (results coordinator and website administrator),
P.J. Potts (results reviewer), M. Thompson (statistical advisor), C.J.B. Gowing (distribution coordinator), Jay M.
Thompson, L. Danyushevsky, R. Mertz-Kraus and A.
Kronz (analytical advisors).

Timetable for Round 30 of G-Probe:

Distribution of test material: September 2024 Results submission deadline: 18th December 2024 Release of report: February 2025

G-Probe 30 test material details

The starting material for this test sample was a pulverized limestone from Mongolia. A small amount of clay material had been added to the bulk material in order to increase the silica content. This material was jointly developed by the Central Geological Laboratory Mongolia (CGL) and the IAG as a Certified Reference Material known as IAG/CGL 020 ML-3 (Limestone) (IAG 2016). A total of 87 grams of original material was ultramilled in 22 batches of ~4 g each, using a high-energy ball mill (Fritsch Pulverisette 7 Premium) with agate milling gear. Total milling time was 45 minutes. The resulting batches were unified into one single slurry and thoroughly re-homogenized by stirring and shaking. This slurry was subdivided into 12 batches B1-B12 and freezedried. The dried nano-particulate powder was rehomogenized and then pelletized to tablets of 13 mm OD. Details of the procedure are outlined in Garbe-Schönberg and Müller (2014). For homogeneity testing following the G-Probe Protocol (IAG, 2020), 12 randomly selected pellets from all 12 batches were analysed with 10 points per pellet by LA-ICP-MS at 60 µm spot size to assess both within-pellet and between-pellet heterogeneity. After careful assessment of all homogeneity data, the KCLs-1NP nano-particulate powder pellets were considered suitable for use as test materials. However, participants should not assume that their individual pellet is sufficiently homogeneous for their particular analytical procedure. A material can be sufficiently homogeneous at the selected beam size / spatial resolution for some analytes and not for others. Participants were alerted to the fact that nanoparticulate materials are hygroscopic and were advised to store the pellet in a desiccator and/or under vacuum.

Submission of results

For G-Probe 30, participants were instructed to apply their routine measurement procedures to provide one measurement result per analyte for the nanoparticulate powder pellet representative of its average composition (Result A), however, 4 laboratories provided two measurements, results A and B.

A total of 1123 measurement results, submitted by 24 laboratories are listed in Table 1. Where results A and B were provided, the average was used for the subsequent data assessment. Of the resultant 961 individual values reported for 62 analytes, 933 values were by LA-ICP-MS from 22 laboratories, 12 by EPMA from two laboratories, 7 by SEM from one laboratory, and 9 by μ-XRF from one laboratory.

Target values and results summary

Robust statistical procedures were used to derive a consensus value from the contributed data for each elemental component in the test material. These procedures included the evaluation for each dataset of the Huber robust mean, the median or a mode derived from a kernel density distribution as detailed by Thompson (2017). Evaluations of consensus values involved a critical assessment of distributions of results from ordered sequential charts for each analyte.

Consensus values were credited with assigned status on the basis that:

- (i) sufficient laboratories had contributed data for estimating a measurand (usually a minimum of 15);
- (ii) visual assessment of sigmoidal plots gave confidence that a substantial proportion of the results from which the consensus was estimated was symmetrically disposed about the consensus;
- (iii) the ratio of the uncertainty in the location estimate to the target precision (H_a , as defined below) was an acceptably small value; and
- (iv) where possible, an evaluation of measurement results by procedure was judged to provide no clear evidence of procedural bias among the measurement results from which the consensus was derived.

Where these criteria were nearly, but not fully met, measurands were credited with 'provisional' rather than 'assigned' status. Instances of provisional status were identified because either:

- (i) a smaller number of results (less than 15 but at least8) contributed to the consensus, or
- (ii) the results were unduly dispersed in relation to the target precision (*H*_a, see below), or

- (iii) the distribution of results was significantly skewed
 (but not severely enough to preclude the recognition of a clear consensus), or
- (iv) procedural bias was identified but a target value could nevertheless be recognised based on the most coherent part of the overall data distribution conforming approximately to a random sample from a normal distribution.

It must be noted that the assignment of a 'provisional' status was handled with some generosity in this round, to provide feedback and z-scores for a few more measurands (e.g., Fe₂O₃, MgO).

Where data were either insufficient in number, or the distribution was too variable or too highly skewed for the confident estimation of a consensus to provide *z*-scores, data distributions are presented 'for information'.

The resulting consensus values credited with 'assigned' or 'provisional' status were those judged to be the best available estimates of the true composition of the test material and therefore suitable for use as target values for proficiency testing. It should be noted, however, that in many cases, these estimates are derived from a single analytical method.

Data distributions for those analytes given 'assigned' or 'provisional' status are presented in Figure 1, and those for which no status could be conferred are shown 'for information' in Figure 2. Measurement results in the Figure 1 and 2 data distribution plots are presented in order of increasing magnitude and identified according to laboratory code. Data symbols are coded by colour and shape according to the method of measurement. By far the majority of results were obtained by LA-ICP-MS, and for a limited number of elements by EPMA, SEM and μ -XRF.

For most trace elements there is no option other than to make assessments based on LA-ICP-MS data, and therefore concerns about the possibility of single method bias, noted above, must be in principle kept in mind and the outcomes should be regarded with caution in the reflection of true values. Nevertheless, the derived consensus values represent the best that currently can be obtained and are, therefore, considered appropriate for the purposes of this proficiency test. Several laboratories in this round required values of a major element oxide for internal standardisation of LA-ICP-MS data. Laboratories coded L1, L30, L34, L45 and L47 were provided with information that the CaO content should be about 50.3 g/100g. Inspection of the results provided by these participants showed no detectable evidence that the use of these values had been responsible for any significant bias in datasets.

Table 2 lists assigned and provisional values for 9 major components and 44 trace elements in G-Probe 30 (KCLs-1NP). Data distribution charts for these 53 measurands that were judged to have satisfactory distributions for consensus values to be conferred with assigned or provisional status are shown in Figure 1. These are: SiO₂*, TiO₂, Al₂O₃*, Fe₂O₃T *, MgO*, CaO, Na₂O*, K₂O*,P₂O₅*, As*, Ba, Be, Bi*, Ce, Co*, Cs, Cu, Dy, Er, Eu, Ga, Gd, Ge*, Hf, Ho, La, Li, Lu, Mn, Mo*, Nb, Nd, Ni*, Pb, Pr, Rb, Sb*, Sc*, Sm, Sn*, Sr, Ta, Tb, Th, Tl*, Tm, U*, V, W*, Y, Yb, Zn*, and Zr*. Of these, values of the 21 analytes marked '*' were credited with provisional status for reasons given above.

Data distribution plots for the 4 analytes: B, Cd, Cr, and In are plotted in Figure 2 for information only, as the data were either insufficient in number, or the data distribution were too highly dispersed or too highly skewed for the confident estimation of a consensus for provision of *z*-scores.

Observations

Higher mass fractions of major and trace elements in this fortified limestone facilitated the assignment of consensus values for 53 measurands – significantly more than for the previous bio-carbonate (Round 28) and speleothem (Round 25b) test materials with very low mass fractions of most elements.

Data distributions for most major elements showed a large range where no clear consensus value could be defined, and the provisional status for Fe₂O₃, MgO, K₂O and P₂O₅ were given with some generosity to provide statistical data and *z*-scores as feedback to the participants. Only CaO and TiO₂ showed an inflection point in their data distributions with a majority of values within the *z*=|2| ranges. Pronounced low tails can be observed for SiO₂, Al₂O₃, Fe₂O₃, CaO, K₂O, and P₂O₅ while TiO₂ and Na₂O show high tails in their data distributions. Note that milling with agate equipment leads to a slightly elevated SiO₂ content when compared to the starting material.

In contrast, results for all REEs and many trace elements – Ba, Be, Cs, Cu, Ga, Hf, Li, Mn, Nb, Pb, Rb, Sr, Ta, Th, V, Y, and Zn showed data distributions with well-defined inflection points for the definition of consensus values. Again, generosity was granted when giving 'assigned' status to the elements Be, Ta, and 'provisional' status to Bi, Mo, Tl, W with very consistent data distributions although the number of values contributing to the consensus was actually slightly less than normally allowed (see above). High tails in the data distributions for As and also for Sc, Cr, Ni and, to a lesser extent, Co were observed. Results for the latter elements could be affected by unidentified interferences from the calcium carbonate matrix in ICP-MS (e.g., ${}^{44}Ca^{1}H - {}^{45}Sc$, ${}^{40}Ca^{12}C - {}^{52}Cr$, ${}^{43}Ca^{16}O - {}^{59}Co$, ${}^{48}Ca^{12}C - {}^{60}Ni$).

Z-score analysis

Assessment of submitted results followed the strategy adopted in recent rounds of G-Probe and detailed in the G-Probe protocol (IAG, 2020). Based on an assessment of the variation of measurement results in earlier rounds, and in order to provide sufficient discrimination for the proficiency test to be helpful to participating laboratories, the fitness for purpose criterion applied throughout was provided by the modified Horwitz function:

$$H_a = k \cdot X_a^{0.8495}$$

where H_a is the standard deviation for proficiency, also referred to as the target precision, calculated for each measurand; and X_a is the best estimate of the true composition, also known as the 'target value' (and may be credited with assigned or provisional status). The values of H_a and X_a are represented in *units of mass fraction*. The factor k = 0.01, which is regarded as appropriate for laboratories working to a 'pure geochemistry' standard of performance, where analytical results are designed for geochemical research and where care is taken to provide data of high precision and accuracy, sometimes at the expense of a reduced sample throughput rate. Z-scores were calculated for the average measurement result submitted by each laboratory from:

$$z = [X - X_a] / H_a$$

where X is the (average) measurement result submitted, X_a is the target value (assigned or provisional) and H_a is the target precision (all as mass fractions).

Z-score values for results submitted to G-Probe 30 are listed in Table 3. *Z*-scores derived from provisional values of measurands are shown in italics.

Participating laboratories are invited to assess their performance using the following criteria:

Z-score results in the range -2 < z < 2 are considered to be 'satisfactory' (in the sense that no action is called for by the participant). If the z-score for any element falls outside this range, especially if it is outside the range -3 < z < 3, laboratories are advised to examine their procedures and, if necessary, take action to ensure that their determinations are not subject to unsuspected analytical bias.

Should a participating laboratory decide that this performance standard is not appropriate for assessment of their measurement results, they are invited to recalculate their *z*-scores by substituting the appropriate value of the standard deviation for proficiency testing, H_a , into the equation for the calculation of *z*-scores (i.e., $z = [X - X_a] / H_a$). Adoption of such an approach should include a justification as to why an amended value of H_a is more appropriate for assessment of their data.

Overall performance

A summary of the overall performance of individual laboratories for this round is plotted in multiple *z*-score charts in Figure 3. In these charts, the *z*-score performance for each element is distinguished by symbols that make it easy to identify whether the measurements results were satisfactory or gave *z*-scores that exceeded the action limits. This chart is designed to help individual laboratories judge their overall performance in this proficiency test. Note, however, that participants should always review their *z*-scores in accordance with their own fitness-forpurpose criteria. Test materials presented as pressed powder pellets have been used in previous G-Probe rounds e.g., GP-4 (Carbonate MACS-3), GP-10 (Phosphate MAPS-4), GP-20 (ultra-milled Basalt Glass GSD-2G-NP), GP-25b (Speleothem KCSp-1NP), GP-28 (Fossil Coral). The preparation of powder pellets is a strategy for presenting materials that cannot be prepared as homogenous glasses or minerals. However, powder pellets are characterized by some porosity and moisture content and cannot be polished with wet polishing techniques. This may represent challenges for measurements by EPMA and SEM.

Participation in future rounds

The benefit from proficiency testing arises from regular participation and laboratories are invited to contribute to the upcoming Rounds 31 (Andesite glass) and 32 (silicate mineral) of G-Probe, the test samples for which are planned for spring 2024.

Acknowledgements

The authors wish to thank Alina Erle (CAU Kiel) for help with the preparation of nano-particulate powder pellets and Ulrike Westernströer for assistance during LA-ICP- MS homogeneity testing. Andrea Mills and Charles Gowing (BGS, Keyworth) are thanked for arranging the dispatch and delivery of the test materials. Thomas Meisel's support for development of procedures involving the ShinyApp to facilitate the visualisation and analysis of proficiency testing datasets and to permit the derivation of modes according to Thompson (2017) is kindly acknowledged.

References

<u>Garbe-Schönberg D</u> and Müller S (2014) Nanoparticulate pressed powder tablets for LA-ICP-MS. JAAS J Analyt Atom Spectrom, 2014, **29**: 990-1000.-<u>http://dx.doi.org/10.1039/C4JA00007B</u>

IAG (2016) Reference Material Certificate of Analysis – CGL/IAG ML-3 (Limestone). International Association of Geoanalysts (Keyworth, UK)

IAG (2020) Protocol for the Operation of the G-Probe Proficiency Testing Scheme. International Association of Geoanalysts (Keyworth, UK), 20pp. <u>http://www.geoanalyst.org/wp-content/uploads/2020/08/G-Probeprotocol-August-2020.pdf</u>.

Thompson M. (2017) On the role of the mode as a location parameter for the results of proficiency tests in chemical measurement. *Anal. Methods*, **9**, p.5534-5540.

Lab C	ode	L1A	L1B	L2A	L2B	L6A	L6B	L7A	L7B	L11A	L11B	L15A	L15B
SiO2	g 100g-1					5.76	5.82	6.438				6.69	-
TiO2	g 100g-1			0.04		0.0367	0.0368	0.0398		0.042		0.0423	
AI2O3	g 100g-1	0.9				0.975	0.973	0.9741		1.147		1.12	
Fe2O3T	g 100g-1			0.33		0.308	0.304	0.2921		0.38		0.331	
MaO	g 100g-1	1.06			l	1,178	1,196	1.21		1.449		1.47	
CaO	g 100g-1			<u> </u>	ł	44.56	44.45	43.56		50.31		48.9	
Na2O	g 100g-1	0.2			ł	0.203	0.2	0.2056		0.221		0.237	
K20	g 100g-1					0.195	0.196	0.1958				0.261	
P205	g 100g-1							0.0766		0.0677		0.0756	
Ag	ma ka-1							0.0100		0.0011		0.0700	
As	mg kg ⁻¹							0.6562		0.674		0.87	
Au	mg kg ⁻¹												
в	ma ka-1	4.44		<u> </u>	ł			4,646		4,126			
Ba	ma ka-1	42.7		48.9	ł	45.46	45.65	45.2		51.2		50.31	
Be	ma ka-1			0.6				0.5814					
Bi	ma ka-1							0.0408		0.0487		0.045	
Cd	ma ka-1	0.07						0.0400		0.0401		0.040	
Ce	ma ka-1	4.63		5.76		5 32	5 38	5 248		6 2603		5.72	
Co	ma ka-1	4.00		0.10		0.518	0.522	0.5344		0.2000		0.583	
Cr	ma ka-1	8 12				0.010	0.022	4 313		5 502		3.9	
Cs	ma ka-1	0.12		2		1 78	1.81	1.855		2 028		2.21	
Cu	ma ka-1	0.89		1 21		0.917	0.927	0.9935		1 1176		1.08	
Dv	ma ka-1	0.00		0.493		0.465	0.468	0.4486		0.5286		0.482	
Fr	ma ka-1			0.465		0.460	0.400	0.2558		0.2986		0.402	
Eu	ma ka-1			0.14		0.117	0.118	0.1212		0.145		0.270	
Ga	ma ka-1	1 22		0.14		1.26	1.28	13		1 459		1 44	
Gd	ma ka-1	1.22		0.592		0.56	0.58	0.5183		0.5978		0.541	
Ga	ma ka-1			0.002		0.00	0.00	0.3524		0.0070		0.365	
Hf	ma ka-1			0.37				0.3214		0.3875		0.379	
Но	ma ka-1			0.096		0.092	0 105	0.0888		0.1068		0.098	
In	ma ka-1			0.000		0.002	0.100	0.0047		0.0081		0.006	
1.2	ma ka-1	2 78		3.49		3.17	3 17	3 107		3,8165		3.4	
11	ma ka-1	9.26		0.40		8.33	8 39	8.95		9.812		10.49	
	ma ka-1	0.20		0.04		0.036	0.036	0.0345		0.0415		0.038	
Mn	ma ka-1	149		180		163.5	164.6	167.5		182.66		181	
Mo	ma ka-1			100		100.0	101.0	0.0586		102.00		0.051	
Nb	ma ka-1			0.68		0.725	0.749	0.7106		0.8236		0.738	
Nd	ma ka-1	2 55		3.22		2.95	3.03	2 882		3 4263		3.12	
Ni	mg kg ⁻¹	1.77				1.7	1.67	1.703				1.8	
Pb	mg kg ⁻¹	2.25		2.77		2.5	2.51	2.452		3.0056		2.98	
Pr	mg kg ⁻¹	0.67		0.76		0.754	0.767	0.7174		0.8563		0.784	
Rb	mg kg ⁻¹			11.8		9.99	9.91	10.29		11.372		12.31	
s	mg kg ⁻¹												
Sb	mg kg ⁻¹							0.1909		0.2446		0.233	
Sc	mg kg ⁻¹					0.66	0.63			0.926		0.722	
Se	mg kg ⁻¹	1										0.194	
Sm	mg kg-1			0.625		0.6	0.61	0.5583		0.66418		0.602	
Sn	mg kg-1	1.14						0.577		0.6761		0.667	
Sr	mg kg-1	903		1011		932.6	934.6	924.1		1034.6		1080	
Та	mg kg ⁻¹			0.064		0.071	0.073	0.0676		0.0797		0.071	
Tb	mg kg ⁻¹			0.083		0.074	0.078	0.0738		0.0886		0.081	
Те	mg kg ⁻¹											0.025	
Th	mg kg ⁻¹	0.56		0.65		0.61	0.63	0.575		0.703		0.644	
ті	mg kg ⁻¹							0.0642		0.0974		0.088	
Tm	mg kg ⁻¹			0.037		0.045	0.043	0.0345		0.0415		0.038	
U	mg kg-1	0.62						0.6229				0.877	
v	mg kg-1					4.61	4.55	5.091		5.764		5.3	
w	mg kg-1							0.6659		0.7915		0.747	
Y	mg kg-1	2.34		3.08		3.22	3.18	3.072		3.4872		3.2	
Yb	mg kg-1			0,273		0.247	0.247	0,2364		0.2817		0,256	
Zn	mg ka-1	6.19				4,88	4,95	4,476		7.6939		7.3	
Zr	mg kg-1			13.8				12.83				13.9	

Lab C	ada	1 174	1 17B	1 19 4	1 10B	1 20 4	1 20B	1 21 A	1.21B	1 22 4	1 22B	1244	1.24B
Lab Co	a 100a-1	6.41	6.61	LINA	2130	1204	LZVD	6.935		6.035	7.020	6 909	2240
5102	g 100g ·	0.41	0.01	0.04				0.633		0.933	7.029	0.898	
1102	g 100g-'	4.00	1.05	0.04				0.039		0.042	0.041	0.0422	
AI203	g 100g-1	1.23	1.25	1.133				1.126		1.074	1.075	1.1543	
Fe2O31	g 100g-1	0.22	0.24	0.33				0.392		0.358	0.356	0.374	
MgO	g 100g-'	1.41	1.41	1.218				1.4		1.350	1.357	1.4545	
CaO	g 100g ⁻¹	35.9	38.49	49.02				50.32		49.735	49.758	53.96	
Na2O	g 100g ⁻¹	0.25	0.24	0.217				0.223		0.207	0.209	0.2475	
K20	g 100g-1	0.17	0.18	0.217				0.218		0.214	0.211	0.2369	
P2O5	g 100g-1			0.07						0.064	0.065		
Ag	mg kg ⁻¹									0.007	0.002		
As	mg kg ⁻¹									0.655	0.619		
Au	mg kg ⁻¹									0.0003	0.0001		
В	mg kg ⁻¹					50.0		10.00		22.772	21.909	50.000	
Ва	mg kg ⁻¹			49.18		53.2		49.86		52.017	51.75	52.202	
Be	mg kg ⁻¹			0.569		0.654				0.624	0.612		
Bi	mg kg ⁻¹									0.043	0.05		
Cd	mg kg ⁻¹									0.008	0.002		
Ce	mg kg ⁻¹			5.957		6.39		5.86		5.782	5.634	6.124	
Co	mg kg ⁻¹			0.807		0.873		0.64		0.585	0.583		
Cr	mg kg ⁻¹			4.761		5.37		4.63		5.427	4.042		
Cs	mg kg ⁻¹			1.914		2.052		2.08		2.046	2.028	2.268	
Cu	mg kg ⁻¹			1.318		0.996		1.18		1.129	1.161		
Dy	mg kg ⁻¹			0.498		0.624		0.53		0.523	0.503	0.533	
Er	mg kg ⁻¹			0.302		0.364		0.3		0.309	0.29	0.311	
Eu	mg kg ⁻¹			0.136		0.1827		0.14		0.135	0.133	0.156	
Ga	mg kg ⁻¹			1.399		1.372		1.43		1.483	1.47		
Gd	mg kg ⁻¹			0.574		0.7095		0.61		0.585	0.571	0.69	
Ge	mg kg ⁻¹			0.379						0.425	0.422		
Hf	mg kg ⁻¹			0.383		0.5021		0.37		0.457	0.429	0.33	
Но	mg kg ⁻¹			0.103				0.1		0.106	0.105	0.106	
In	mg kg ⁻¹									0.008	0.009		
La	mg kg ⁻¹			3.569		4.2706		3.51		3.49	3.49	3.672	
Li	mg kg ⁻¹			9.737		10.55		10.4					
Lu	mg kg ⁻¹			0.042		0.053		0.04		0.042	0.044	0.041	
Mn	mg kg ⁻¹			177.7				191.5		171.041	172.122	202	
Мо	mg kg ⁻¹							0.04		0.057	0.047		
Nb	mg kg ⁻¹			0.788		0.735		0.77		0.789	0.781	0.75	
Nd	mg kg ⁻¹			3.112		4.03		3.32		3.297	3.16	3.422	
Ni	mg kg ⁻¹			2.117		3.126		1.87		1.848	1.829		
Pb	mg kg ⁻¹			2.779		3.4469		3.02		2.859	2.836	3.234	
Pr	mg kg ⁻¹			0.806		0.9247		0.82		0.799	0.769	0.83	
Rb	mg kg ⁻¹			11.06		12.25		11.34		11.542	11.379	12.31	
s	mg kg ⁻¹									89.458	102.129		
Sb	mg kg ⁻¹					0.213				0.29	0.286		
Sc	mg kg ⁻¹			1.069				0.74		0.78	0.773		
Se	mg kg ⁻¹									0.125	0.092		
Sm	mg kg-1			0.604		0.755		0.67		0.654	0.628	0.653	
Sn	mg kg ⁻¹					0.5846				0.623	0.618		
Sr	mg kg ⁻¹			1005		1164		1084.5		1056.67	1050.603	1077	
Та	mg kg ⁻¹			0.081						0.08	0.078	0.078	
Tb	mg kg ⁻¹			0.083		0.1106		0.08		0.083	0.078	0.086	
Te	mg kg ⁻¹									0.012	0.0001		
Th	mg kg ⁻¹			0.703		0.864		0.67		0.736	0.778	0.698	
ті	mg kg ⁻¹									0.091	0.099		
Tm	mg kg ⁻¹			0.042		0.0536		0.04		0.045	0.038	0.042	
U	mg kg ⁻¹			1.149		0.873		0.53		1.024	0.775	0.488	
v	mg kg ⁻¹			5.482				5.67		5.449	5.465	5.67	
w	mg kg ⁻¹									0.834	0.79	0.856	
Y	mg kg ⁻¹			3.296		3.568		3.41		3.461	3.337	3.728	
Yb	mg kg ⁻¹			0.262		0.3416		0.28		0.287	0.265	0.301	
Zn	mg kg ⁻¹			7.116		5.937		7.15		6.052	6.089	7.069	
Zr	mg kg ⁻¹			14.24		14.695		11.43		16.102	16.507	11.7	

Lab Cr	ode	I 27A	1 27B	I 28A	1 28B	1304	1.30B	133▲	1.33B	1 34A	1.34B	143A	143B
SiO2	a 100a-1	7.04		6.57	6.47	7.09		7.04		6 9644		11	
3102	g 100g	7.04		0.06	0.47	0.042		0.05		0.0077		0.07	
1102	g 100g ·	4.05		0.06	0.02	0.042		0.05		0.0372		0.07	
AI2O3	g 100g-'	1.05		1.06	1.05	1.13		1		1.144		1.78	
Fe2O31	g 100g-1	4.00		0.31	0.27	0.357		0.4		0.3133		0.57	
MgO	g 100g-1	1.29		1.31	1.32	1.368		1.22		1.205		2.37	
CaO	g 100g-1	50.01		49.93	49.71	50.32		49.64		50.158		83.1	
Na2O	g 100g-1			0.21	0.22	0.246		0.15		0.2157		0.39	
K2O	g 100g-1	_		0.2	0.2	0.292		0.19		0.2131		0.37	
P2O5	g 100g-1			0.07	0.07	0.034		0.05		0.0692		0.11	
Ag	mg kg ⁻¹												
As	mg kg ⁻¹			11.1	10.1	1.81		1.09		0.7217			
Au	mg kg ⁻¹												
В	mg kg ⁻¹			6.42	6.38			7.93					
Ва	mg kg ⁻¹			63.5	62.6	50.03		45.8		49.154		88.7	
Be	mg kg-1			0.6	0.62	0.562		0.558					
Bi	mg kg ⁻¹			0.04	0.05								
Cd	mg kg ⁻¹												
Ce	mg kg ⁻¹			6.83	6.84	6.03		6.78		5.322		10	
Co	ma ka-1			0.51	0.61	0.618		0.752		0.6132			
Cr.	ma ka-1			11.4	11.5	7.03		3.49		4.065		6 74	
0; Ce	ma ka-1			2.12	2.08	2 166		1.98		1 914		0.1 1	
C:	mg kg-1			1 15	1.35	2.100		0.211		1.006			
Cu	nig kg			0.54	1.35	0.95		0.211		0.4704		0.0	
Dy Г-	mg kg 1			0.54	0.04	0.475		0.409		0.4704		0.8	
Er -	mg kg ^{-,}			0.3	0.29	0.265		0.202		0.2501		0.49	
Eu	mg kg ⁻¹			0.14	0.14	4.50		0.142		0.1273		0.22	
Ga	mg kg ⁻¹			1.61	1.6	1.52		1.34		1.332			
Gd	mg kg ⁻¹			0.6	0.59	0.57		0.594		0.5321		1.01	
Ge	mg kg ⁻¹			0.36	0.47	0.144				0.4311			
Hf	mg kg ⁻¹			0.37	0.35	0.34		0.148		0.3084		0.62	
Но	mg kg ⁻¹			0.1	0.1			0.073		0.0934		0.16	
In	mg kg ⁻¹												
La	mg kg ⁻¹			3.92	3.96	3.52		3.39		3.293		6	
Li	mg kg ⁻¹			10.8	10.9	10.41		10.56		9.771			
Lu	mg kg ⁻¹			0.04	0.04	0.0367		0.042		0.033		0.06	
Mn	mg kg ⁻¹			222	223	193.42		213		177.9			
Мо	mg kg ⁻¹			0.06	0.07					0.0367			
Nb	mg kg-1			0.86	0.86	0.754		0.747		0.6963		1.32	
Nd	mg kg ⁻¹			3.69	3.72	3.2		3.32		2.976		5.27	
Ni	mg kg ⁻¹			1.86	2	2.39		2.63		2.604			
Pb	mg kg-1			3.09	3.1	2.86		2.84		2.753			
Pr	mg kg ⁻¹			0.85	0.84	0.82		0.975		0.7281		1.36	
Rb	mg kg ⁻¹			13.2	13.1	12.21		11.7		11.1		18.8	
s	mg kg ⁻¹												
Sh	ma ka-1			0.27	0.27	0.16		0.266		0.2045			
Sc	mg ka-1			0.8	0.83	0.73		2.01				1,17	
Se	mg ka-1			0.0	0.00	0.10		2.01					
Sm	ma ka-1			0.68	0.66	0.62		0.638		0.5829		1.06	
Sn	ma ka-1			0.00	0.00	0.02		0.601		0.550/		1.00	
e.	ma ka-1			1007	1002	1052 77		1071		103/ 2/		1722	
та Та	ma ka-1			0.08	0.092	1032.11		0.047		0.0666		1100	
	mg kg *			0.00	0.00			0.047		0.0000		0.12	
10 T-	ing Kg			0.00	0.00			0.002		0.0740		0.13	
16	mg Kg ⁻			07	0.70	0.075		0.500		0.01			
	mg kg-1			U./	0.76	0.675		0.583		0.071			
<u> </u>	mg kg ⁻¹			0.09	0.09					0.0745			
Im	mg kg ⁻¹			0.04	0.04			0.037		0.0348		0.06	
U	mg kg ⁻¹			0.8	0.78	1.04		0.485		0.0522			
v	mg kg ⁻¹			6.22	6.16	5.516		5.33		5.027		8.7	
w	mg kg ⁻¹												
Y	mg kg ⁻¹			3.93	3.86	3.117		2.9		3.125		5.45	
Yb	mg kg ⁻¹			0.28	0.27	0.245		0.237		0.239		0.4	
Zn	mg kg-1			6.05	6.02	6.73		7.3		6.4			
Zr	mg kg-1			16.6	15.8	12.29		9.35		10.951		22.7	

Lab C	ode	I 44A	1 44B	I 45A	1.45B	I 47A	I 47B	1.55A	L 55B	1.58A	1.58B	1 62 A	1.62B
Lab Co	a 100a-1	4.00		Link	2402	4.47	2470	7 702016089	2008	4.556	LUUD	6.99	2020
5102	g 100g -	4.09				4.47		7.792010086		4.550		0.00	
1102	g 100g-1	0.05				0.04		0.04		0.037		0.0473	
AI2O3	g 100g ⁻¹	1.05				1.23		1.218290033		0.704		1.225	
Fe2O3T	g 100g-1	0.37				0.75		0.344423316		0.297		0.3758	
MgO	g 100g-1	1.07				1.24		1.320577019		1.293		1.2597	
CaO	g 100g-1	50.32								48.84		50.496	
Na2O	g 100g-1	0.21				0.2		0.217938695		0.144		0.2287	
K2O	g 100g-1					0.01		0.233328515		0.159			
P2O5	g 100g-1					0.061		0.0475		0.057		0.068	
Ag	mg kg ⁻¹												
As	ma ka-1					1.32		0 738911202		0.335			
Au	ma ka-1							0.100011202		0.000			
B	ma ka-1							9 036532449					
B	nig kg	49.2		46.6		49.7		50 20026620		EE 442		E2 16	
ва	mg kg	40.3		40.0		46.7		50.2005002c		55.445		55.10	
Be	mg kg ⁻ '	0.61		0.46		0.52							
Bi	mg kg ⁻¹									0.042			
Cd	mg kg ⁻¹									0.011			
Ce	mg kg ⁻¹	5.37		4.91		5.52		5.924663116		6.41		5.84	
Co	mg kg ⁻¹			0.82		1.95		0.606297263		0.257			
Cr	mg kg ⁻¹	3.64		9.57		4.19		4.733469679		6.85			
Cs	mg kg-1			1.45						1.676			
Cu	mg kg ⁻¹			0.76		1.03		1.123108447		0.873			
Dv	mg kg ⁻¹	0.51		0.42		0.51		0.509846036		0.476			
Er	mg kg ⁻¹	0.29		0.23		0.28		0.290258981		0.27			
Eu	ma ka-1	0.13		0.11		0.14		0 136571746		0 145		0 1359	
Ga	ma ka ⁻¹	1.72		0.11		0.11		0.100011110		1 15		1 584	
Cd	ma ka-1	0.64		0.40		0.62		0.591724414		0.555		1.004	
Gu	mg kg	0.04		0.49		0.02		0.301724414		0.333			
Ge	mg kg	0.20		0.24		0.59				0.240			
HT	mg kg ⁻ '	0.39		0.34						0.377			
Но	mg kg ⁻¹	0.11		80.0		0.1		0.102771794		0.097			
In	mg kg ⁻¹									0.016			
La	mg kg ⁻¹	3.53		3		3.42		3.574689325		3.615		3.48	
Li	mg kg ⁻¹	9.09		7		9.68		10.45764808				10.66	
Lu	mg kg ⁻¹	0.04		0.03		0.04		0.04		0.04			
Mn	mg kg ⁻¹	172		153		177		189.2805725		156		183.9	
Мо	mg kg ⁻¹									0.044			
Nb	mg kg ⁻¹	0.75		0.57		0.68				0.554		0.6826	
Nd	mg kg ⁻¹	3.21		2.74		3.09		3.181021717		3.051		3.08	
Ni	mg kg ⁻¹	2.06		1.4		2.78		1.910834253		1.708			
Pb	mg kg ⁻¹	2.48		2.16		2.69		2.873806131		2.076		2,921	
Pr	ma ka-1	0.8		0.7		0.79		0 811009136		0.874		0.801	
Ph	ma ka ⁻¹	0.0		8 37		0.10		12 11905053		9.08		0.001	
e	ma ka-1			0.01				12.11000000		0.00			
5 85	mg kg-1	0.21		0.15						0.179			
30 Se	nig kg	0.21		0.13		4.50	_	0.702007406		0.170		0.745	
30	ing Kg	1.30		0.73		4.03		0.703007186		0.720	-	0.715	
Se	mg kg ⁻ '												
Sm	mg kg ⁻¹	0.57		0.52		0.62		0.632988751		0.566			
Sn	mg kg ⁻¹	0.59		0.47						0.444			
Sr	mg kg ⁻¹	1110		932		1011		1092.932057		1088		1032.35	
Та	mg kg ⁻¹	0.08		0.06						0.078			
Tb	mg kg ⁻¹	0.08		0.07		0.08		0.0842		0.081			
Te	mg kg ⁻¹												
Th	mg kg-1	0.66		0.57		0.66				0.666			
ті	mg kg-1									0.068			
Тт	mg kg-1	0.04		0.03		0.04		0.0409		0.041			
	ma ka-1	0.04 0.0		0.00		0.74		0.640986986		0.688			
v	ma ka-1	5.00		3.25		5.14		5 6031/5/04		3 857		5 796	
v	ing Kg	J.1		5.30		J.4Z		5.055145424		0.504	<u> </u>	5.100	
vv	mg kg*1	0.8		0.74		0.00		2.400004404		0.531		2.00	
Y	mg kg ⁻¹	3.34		2./1		3.29		3.468661101		3		3.06	
Yb	mg kg-1	0.25		0.22		0.25		U.267697693		0.254			
Zn	mg kg ⁻¹	5.92		4.27		6.51		6.682777273		3.629		7.17	
Zr	mg kg-1	14.6		11.6		14.9		12.38935539		12.95		14.59	

Table 2 - G-Probe 30 Designated values and statistical summary for Limestone,	KCLs-1NP Pellet.

	Designated Value	Uncertainty of designated value	Horwitz Quality	Horwitz Target Precision	Uncertainty/ Target Precision	Number of reported	Robust Mean of	Robust SD of results	Median of	Status of designated value	Type of designated
	×		k 0.01	Frecision		-	Tesuits				value
	X _{pt}	u(x _{pt})	KX 0.01	σ _{pt}	u(x _{pt})/or _{pt}	n					
SiO2	g 100g ⁻¹	g 100g-1 0 104	1	g 100g ⁻¹	1 009	18	g 100g ⁻¹ 6 654	g 100g ⁻¹	g 100g ⁻¹ 6 857	Provisional	Mode
TiO2	0.04	0.0008526	1	0.001299	0.6565	19	0.0415	0.003803	0.04	Assigned	Median
AI2O3	1 126	0.03082	1	0.02212	1 393	21	1 104	0 1137	1 126	Provisional	Median
Fe2O3T	0.3478	0.01085	1	0.008154	1 331	20	0.3478	0.04854	0.3507	Provisional	Robust Mean
MaQ	1.304	0.02749	1	0.02506	1.097	21	1.304	0.126	1.293	Provisional	Robust Mean
CaO	49.91	0.2159	1	0.5542	0.3896	18	49.69	1,256	49.91	Assigned	Median
Na2O	0.2164	0.005651	1	0.005448	1.037	20	0.218	0.0217	0.2164	Provisional	Median
K20	0.2128	0.009923	1	0.005373	1.847	16	0.2128	0.03969	0.2128	Provisional	Robust Mean
P2O5	0.06785	0.003625	1	0.002034	1.782	14	0.06475	0.01214	0.06785	Provisional	Median
	and best	ma kert		ma kart				and least	and based		
As	0.6978	0.0492	1	0.05892	0.835	11	0.9358	0.4599	0.7389	Provisional	Mode
Ва	50.02	0.7819	1	2.221	0.3521	22	50.02	3.667	49.95	Assigned	Robust Mean
Be	0.5809	0.01352	1	0.05042	0.2681	11	0.5809	0.04483	0.5814	Assigned	Robust Mean
Bi	0.04467	0.001224	1	0.005704	0.2145	6	0.04467	0.002997	0.045	Provisional	Robust Mean
Ce	5.85	0.1763	1	0.3587	0.4917	22	5.865	0.6134	5.85	Assigned	Median
Co	0.5835	0.0219	1	0.05061	0.4327	15	0.6547	0.1517	0.6132	Provisional	Mode
Cs	2.014	0.04645	1	0.145	0.3204	16	1.99	0.1754	2.014	Assigned	Median
Cu	1.033	0.03942	1	0.08222	0.4794	18	1.033	0.1672	1.018	Assigned	Robust Mean
Dy	0.499	0.009198	1	0.04431	0.2076	20	0.499	0.04114	0.5039	Assigned	Robust Mean
Er	0.283	0.006092	1	0.02737	0.2226	20	0.283	0.02724	0.285	Assigned	Robust Mean
Eu	0.1375	0.002732	1	0.01482	0.1843	20	0.1375	0.01222	0.1383	Assigned	Robust Mean
Ga	1.411	0.03643	1	0.1071	0.34	16	1.411	0.1457	1.414	Assigned	Robust Mean
Gd	0.5869	0.01143	1	0.05086	0.2247	20	0.5888	0.05081	0.5869	Assigned	Median
Ge	0.3981	0.054	1	0.03657	1.477	9	0.3731	0.09796	0.379	Provisional	Mode
Hf	0.3696	0.01203	1	0.03434	0.3504	17	0.3696	0.04961	0.37	Assigned	Robust Mean
Но	0.09961	0.001829	1	0.01127	0.1622	18	0.09961	0.007758	0.1	Assigned	Robust Mean
La	3.499	0.06158	1	0.2318	0.2657	22	3.499	0.2888	3.5	Assigned	Robust Mean
Li	10.22	0.133	1	0.5759	0.2309	17	9.884	0.8048	9.812	Assigned	Mode
Lu	0.03967	0.0007786	1	0.005157	0.151	20	0.03967	0.003482	0.04	Assigned	Robust Mean
Mn	179.2	3.921	1	6.565	0.5973	20	179.2	17.54	178.9	Assigned	Robust Mean
Mo	0.051	0.005338	1	0.006384	0.8361	7	0.04961	0.01064	0.051	Provisional	Median
Nb	0.7425	0.01828	1	0.06211	0.2943	20	0.7392	0.06299	0.7425	Assigned	Median
Na	3.140	0.086	1	0.2117	0.4061	22	3.189	0.2542	3.191	Assigned	Mode
NI Dh	1.000	0.0576	1	0.1322	0.4371	17	2.052	0.4002	0.91	Provisional	Mode
FU Dr	0.8035	0.00715	1	0.1941	0.3459	21	0.8055	0.3292	0.8035	Assigned	Median
Rh	11 51	0.2746	1	0.6374	0.4307	18	11 51	1 165	11 58	Assigned	Robust Mean
Sh	0.2115	0.01786	1	0.0074	0.8358	12	0 2173	0.04792	0 2115	Provisional	Median
Sc	0.72	0.00603	1	0.06051	0.09966	16	0.8971	0.2654	0.7583	Provisional	Mode
Sm	0.6232	0.01084	1	0.05353	0.2026	20	0.6232	0.04849	0.6225	Assigned	Robust Mean
Sn	0.6339	0.0348	1	0.0543	0.6409	13	0.6339	0.1255	0.6205	Provisional	Robust Mean
Sr	1053	16.05	1	29.55	0.543	22	1044	74.16	1053	Assigned	Median
Та	0.075	0.002483	1	0.008859	0.2803	14	0.07263	0.008513	0.075	Assigned	Median
ТЬ	0.08077	0.001419	1	0.009434	0.1505	19	0.08077	0.006187	0.0805	Assigned	Robust Mean
Th	0.6574	0.01517	1	0.05601	0.2709	19	0.6574	0.06615	0.66	Assigned	Robust Mean
ті	0.08245	0.00531	1	0.0096	0.5531	7	0.08245	0.01405	0.088	Provisional	Robust Mean
Tm	0.03998	0.0008467	1	0.005191	0.1631	19	0.03998	0.003691	0.04	Assigned	Robust Mean
U	0.688	0.07121	1	0.05821	1.223	17	0.7155	0.2022	0.688	Provisional	Median
v	5.593	0.138	1	0.3452	0.3997	19	5.443	0.4735	5.482	Assigned	Mode
w	0.7915	0.03125	1	0.06557	0.4766	7	0.7569	0.0872	0.7915	Provisional	Median
Y	3.263	0.06732	1	0.2185	0.3082	22	3.263	0.3158	3.245	Assigned	Robust Mean
Yb	0.2628	0.005557	1	0.0257	0.2162	20	0.2628	0.02485	0.259	Assigned	Robust Mean
Zn	6.73	0.579	1	0.404	1.433	20	6.33	1.017	6.455	Provisional	Mode
Zr	13.49	0.4683	1	0.7295	0.642	19	13.49	2.041	13.8	Provisional	Robust Mean

Table 3 - G-Probe 30 Z-scores for Limestone	, KCLs-1NP Pellet.	18/12/2024
---	--------------------	------------

Lab Code	L1	L2	L6	L7	L11	L15	L17	L19	L20	L21	L22	L24	L27
SiO2: 1	*	*	-10.66	-4 38	*	_1 03	-3.68	*	*	-0.52	0.90	0.09	1 47
TiO2: 1	*	0.00	-2.50	-4.30	1 54	-7.95	-5.00	0.00	*	-0.32	1 16	1.69	*
A1203: 1	-10 22	*	-2.30	-6.87	0.95	-0.27	5 1 5	0.00	*	0.00	-2.33	1.03	-3 44
Fo203T- 1	*	-2.18	-5.13	-6.83	3 95	-2.06	-14 45	-2.18	*	5 42	1 13	3 21	*
Ma0:1	-9 75	*	-4 68	-3 76	5 77	6.61	4 22	-3 44	*	3.82	2.08	5 99	-0.57
CaO: 1	*	*	-9.76	-11 47	0.71	-1.83	-22.95	-1.61	*	0.73	-0.30	7.30	0.07
Na20: 1	-3 00	*	-2 73	-1.97	0.85	3 79	5 26	0.12	*	1 22	-1.53	5 72	*
K20: 1	*	*	-3.22	-3 17	*	8.97	-7.04	0.78	*	0.96	-0.06	4 48	*
P205: 1	*	*	*	4.30	-0.07	3.81	*	1.06	*	*	-1.65	*	*
As: 1	*	*	*	-0.71	-0.40	2.92	*	*	*	*	-1.03	*	*
Ba: 1	-3.30	-0.51	-2.01	-2.17	0.53	0.13	*	-0.38	1.43	-0.07	0.84	0.98	*
Be: 1	*	0.38	*	0.01	*	*	*	-0.24	1.45	*	0.74	*	*
Bi: 1	*	*	*	-0.68	0.71	0.06	*	*	*	*	0.32	*	*
Ce: 1	-3.40	-0.25	-1.39	-1.68	1.14	-0.36	*	0.30	1.51	0.03	-0.40	0.76	*
Co: 1	*	*	-1.25	-0.97	*	-0.01	*	4.42	5.72	1.12	0.01	*	*
Cs: 1	*	-0.10	-1.51	-1.10	0.10	1.35	*	-0.69	0.26	0.46	0.16	1.75	*
Cu: 1	-1.74	2.15	-1.35	-0.48	1.03	0.57	*	3.47	-0.45	1.79	1.36	*	*
Dv: 1	*	-0.14	-0.73	-1.14	0.67	-0.38	*	-0.02	2.82	0.70	0.32	0.77	*
Er: 1	*	-0.66	-0.14	-0.99	0.57	-0.25	*	0.70	2.96	0.62	0.60	1.02	*
Eu: 1	*	0.17	-1.35	-1.10	0.51	-0.44	*	-0.10	3.05	0.17	-0.24	1.25	*
Ga: 1	-1.78	*	-1.31	-1.03	0.45	0.28	*	-0.11	-0.36	0.18	0.62	*	*
Gd: 1	*	0.10	-0.33	-1.35	0.22	-0.90	*	-0.25	2.41	0.45	-0.17	2.03	*
Ge: 1	*	*	*	-1.25	*	-0.90	*	-0.52	*	*	0.70	*	*
Hf: 1	*	0.01	*	-1.40	0.52	0.28	*	0.39	3.86	0.01	2.14	-1.15	*
Но: 1	*	-0.32	-0.10	-0.96	0.64	-0.14	*	0.30	*	0.03	0.52	0.57	*
La: 1	-3.10	-0.04	-1.42	-1.69	1.37	-0.43	*	0.30	3.33	0.05	-0.04	0.75	*
Li: 1	-1.66	*	-3.22	-2.20	-0.70	0.48	*	-0.83	0.58	0.32	*	*	*
Lu: 1	*	0.06	-0.71	-1.00	0.36	-0.32	*	0.45	2.58	0.06	0.65	0.26	*
Mn: 1	-4.60	0.12	-2.31	-1.78	0.52	0.27	*	-0.23	*	1.87	-1.16	3.47	*
Mo: 1	*	*	*	1.19	*	0.00	*	*	*	-1.72	0.16	*	*
Nb: 1	*	-1.01	-0.09	-0.51	1.31	-0.07	*	0.73	-0.12	0.44	0.68	0.12	*
Nd: 1	-2.81	0.35	-0.74	-1.25	1.32	-0.12	*	-0.16	4.18	0.82	0.39	1.30	*
Ni: 1	-0.28	*	-0.93	-0.79	*	-0.06	*	2.34	9.97	0.47	0.23	*	*
Pb: 1	-3.04	-0.36	-1.73	-2.00	0.85	0.72	*	-0.31	3.13	0.93	0.04	2.03	*
Pr: 1	-2.01	-0.65	-0.65	-1.30	0.79	-0.29	*	0.04	1.82	0.25	-0.29	0.40	*
Rb: 1	*	0.45	-2.45	-1.92	-0.22	1.25	*	-0.71	1.16	-0.27	-0.08	1.25	*
Sb: 1	*	*	*	-0.96	1.55	1.01	*	*	0.07	*	3.58	*	*
Sc: 1	*	*	-1.24	*	3.40	0.03	*	5.77	*	0.33	0.93	*	*
Sm: 1	*	0.03	-0.34	-1.21	0.76	-0.40	*	-0.36	2.46	0.87	0.33	0.56	*
Sn: 1	9.32	*	*	-1.05	0.78	0.61	*	*	-0.91	*	-0.25	*	*
Sr: 1	-5.08	-1.43	-4.05	-4.37	-0.63	0.91	*	-1.63	3.75	1.06	0.01	0.81	*
Ta: 1	*	-1.24	-0.34	-0.84	0.53	-0.45	*	0.68	*	*	0.45	0.34	*
Tb: 1	*	0.24	-0.51	-0.74	0.83	0.02	*	0.24	3.16	-0.08	-0.03	0.55	*
Th: 1	-1.74	-0.13	-0.67	-1.47	0.81	-0.24	*	0.81	3.69	0.23	1.78	0.73	*
TI: 1	*	*	*	-1.90	1.56	0.58	*	*	*	*	1.31	*	*
Tm: 1	*	-0.57	0.77	-1.06	0.29	-0.38	*	0.39	2.62	0.00	0.29	0.39	*
U: 1	-1.17	*	*	-1.12	*	3.25	*	7.92	3.18	-2.71	3.63	-3.44	*
V: 1	*	*	-2.93	-1.45	0.50	-0.85	*	-0.32	*	0.22	-0.39	0.22	*
W: 1	*	*	*	-1.92	0.00	-0.68	*	*	*	*	0.31	0.98	*
Y: 1	-4.23	-0.84	-0.29	-0.88	1.02	-0.29	*	0.15	1.39	0.67	0.62	2.13	*
Yb: 1	*	0.40	-0.61	-1.03	0.74	-0.26	*	-0.03	3.07	0.67	0.51	1.49	*
Zn: 1	-1.34	*	-4.49	-5.58	2.39	1.41	*	0.96	-1.96	1.04	-1.63	0.84	*
Zr: 1	*	0.42	*	-0.91	*	0.56	*	1.02	1.65	-2.83	3.86	-2.46	*

Table 3 - G-Probe 30 Z-scores for Limestone,	KCLs-1NP Pellet.	18/12/2024
--	------------------	------------

Lab Code	L28	L30	L33	L34	L43	L44	L45	L47	L55	L58	L62
SiO2: 1	-3.58	1.95	1.47	0.73	39.90	-27.16	*	-23.47	8.76	-22.64	-0.09
TiO2: 1	0.00	1.54	7.70	-2.16	23.10	7.70	*	0.00	-0.02	-2.31	5.62
AI2O3: 1	-3.21	0.18	-5.70	0.81	29.56	-3.44	*	4.70	4.17	-19.08	4.48
Fe2O3T: 1	-7.09	1.13	6.40	-4.23	27.25	2.72	*	49.33	-0.41	-6.23	3.44
MgO: 1	0.43	2.54	-3.36	-3.96	42.52	-9.35	*	-2.57	0.65	-0.45	-1.78
CaO: 1	-0.17	0.73	-0.50	0.44	59.88	0.73	*	*	*	-1.94	1.05
Na2O: 1	-0.25	5.44	-12.18	-0.12	31.87	-1.17	*	-3.00	0.29	-13.28	2.27
K20: 1	-2.39	14.74	-4.25	0.05	29.26	*	*	-37.75	3.82	-10.02	*
P2O5: 1	1.06	-16.64	-8.77	0.65	20.72	*	*	-3.37	-10.02	-5.33	0.07
As: 1	168.06	18.88	6.66	0.41	*	*	*	10.56	0.70	-6.16	*
Ba: 1	5.87	0.00	-1.90	-0.39	17.42	-0.78	-1.54	-0.60	0.12	2.44	1.41
Be: 1	0.58	-0.38	-0.45	*	*	0.58	-2.40	-1.21	*	*	*
Bi: 1	0.06	*	*	*	*	*	*	*	*	-0.47	*
Ce: 1	2.75	0.50	2.59	-1.47	11.57	-1.34	-2.62	-0.92	0.21	1.56	-0.03
Co: 1	-0.46	0.68	3.33	0.59	*	*	4.67	27.00	0.45	-6.45	*
Cs: 1	0.59	1.05	-0.23	-0.69	*	*	-3.89	*	*	-2.33	*
Cu: 1	2.64	-1.25	-10.00	-0.33	*	*	-3.32	-0.04	1.10	-1.95	*
Dy: 1	0.93	-0.54	-2.03	-0.65	6.79	0.25	-1.78	0.25	0.24	-0.52	*
Er: 1	0.44	-0.66	-2.96	-1.20	7.57	0.26	-1.93	-0.11	0.27	-0.47	*
Eu: 1	0.17	*	0.30	-0.69	5.57	-0.51	-1.85	0.17	-0.06	0.51	-0.11
Ga: 1	1.82	1.02	-0.66	-0.73	*	2.89	*	*	*	-2.43	1.62
Gd: 1	0.16	-0.33	0.14	-1.08	8.32	1.04	-1.90	0.65	-0.10	-0.63	*
Ge: 1	0.46	-6.95	*	0.90	*	*	*	5.25	*	-4.16	*
Hf: 1	-0.28	-0.86	-6.45	-1.78	7.29	0.60	-0.86	*	*	0.22	*
Ho: 1	0.03	*	-2.36	-0.55	5.36	0.92	-1.74	0.03	0.28	-0.23	*
La: 1	1.90	0.09	-0.47	-0.89	10.79	0.13	-2.15	-0.34	0.33	0.50	-0.08
Li: 1	1.10	0.34	0.60	-0.77	*	-1.96	-5.58	-0.93	0.42	*	0.77
Lu: 1	0.06	-0.58	0.45	-1.29	3.94	0.06	-1.88	0.06	0.06	0.06	*
Mn: 1	6.59	2.16	5.15	-0.20	*	-1.10	-3.99	-0.34	1.53	-3.54	0.71
Mo: 1	2.19	*	*	-2.24	*	*	*	*	*	-1.10	*
Nb: 1	1.89	0.19	0.07	-0.74	9.30	0.12	-2.78	-1.01	*	-3.03	-0.96
Nd: 1	2.64	0.26	0.82	-0.80	10.03	0.30	-1.92	-0.26	0.17	-0.45	-0.31
Ni: 1	0.93	4.40	6.22	6.02	*	1.91	-3.08	7.35	0.78	-0.75	*
Pb: 1	1.31	0.10	0.00	-0.45	*	-1.85	-3.50	-0.77	0.17	-3.94	0.42
Pr: 1	0.62	0.25	2.58	-1.14	8.38	-0.05	-1.56	-0.20	0.11	1.06	-0.04
Rb: 1	2.57	1.10	0.30	-0.65	11.43	*	-4.93	*	0.95	-3.81	*
Sb: 1	2.74	-2.41	2.55	-0.33	*	-0.07	-2.88	*	*	-1.57	*
Sc: 1	1.57	0.17	21.32	*	7.44	10.41	0.17	62.97	-0.28	0.10	-0.08
Sm: 1	0.87	-0.06	0.28	-0.75	8.16	-0.99	-1.93	-0.06	0.18	-1.07	*
Sn: 1	4.07	1.49	1.05	-1.37	*	-0.81	-3.02	*	*	-3.50	*
Sr: 1	1.40	-0.01	0.60	-0.64	23.00	1.92	-4.10	-1.43	1.34	1.18	-0.71
Ta: 1	0.56	*	-3.16	-0.95	*	0.56	-1.69	*	*	0.34	*
Tb: 1	-0.08	*	-1.99	-0.66	5.22	-0.08	-1.14	-0.08	0.36	0.02	*
Th: 1	1.30	0.31	-1.33	-0.85	*	0.05	-1.56	0.05	*	0.15	*
TI: 1	0.79	*	*	-0.83	*	*	*	*	*	-1.50	*
Tm: 1	0.00	*	-0.57	-1.00	3.86	0.00	-1.92	0.00	0.17	0.20	*
U: 1	1.75	6.05	-3.49	-10.92	*	-0.48	1.92	0.89	-0.81	0.00	*
V: 1	1.73	-0.22	-0.76	-1.64	9.00	0.31	-6.50	-0.50	0.29	-5.03	0.56
W: 1	*	*	*	*	*	0.13	*	*	*	-3.97	*
Y: 1	2.89	-0.67	-1.66	-0.63	10.01	0.35	-2.53	0.12	0.94	-1.21	-0.93
Yb: 1	0.48	-0.69	-1.00	-0.92	5.34	-0.50	-1.66	-0.50	0.19	-0.34	*
Zn: 1	-1.72	0.00	1.41	-0.82	*	-2.00	-6.09	-0.54	-0.12	-7.68	1.09
Zr: 1	3.71	-1.65	-5.68	-3.48	12.62	1.52	-2.59	1.93	-1.51	-0.74	1.50

G-Probe 30 - Symbol Plots for Nb

1.38

1.20

1.00

0.80

0.60 0.40

0.20

0.49

0.40

0.30

0.20

0.10

0.03

20

18

16

14

12

11

q

L33 L34 L21

LA-ICP-MS 🔵 EPMA

SFM

🔻 u-XRF

A LIBS

Concentration Zr mg kg⁻¹

L45

5

Concentration Yb mg kg⁻¹

-28

33

Concentration W mg kg⁻¹

Cther

Figure 2: G-Probe 30 - Limestone, KCLs-1NP Pellet. Data distribution charts provided for information only for elements for which values could not be credited with assigned or provisional status.

Multiple Z-Score Chart for G-Probe 30

SiO2			•	•		•	•			•	•	•	•	•	•	•	•		•		•		•	•
TiO2		•	•	•	•	•		•		•	•	•		•	•		•				•	•	•	A
Al2O3	•		•	•	•	•		•		•	•	•	▼	•	•	•	•		•				•	A
Fe2O3T		•	•	•		•	•	•			•			•	•		•					•	•	A
MgO	•		•	•				•					•	•		•	•		•		•	•	•	•
CaO			▼	▼	•	•	▼	•		•	٠		•	•	٠	•	•		•				•	•
Na2O	•		•	•	•			•		•	•			•		•	•		•		•	•	•	A
K2O			•	•			•	•		•	•			•		•	•				•		•	
P2O5					•			•			•			•	•	•	•				•	•	•	•
As				•	•						•						•					•	•	
Ba	•	•	•	•	•	•		•	•	•	•	•			•	٠	•		•	•	•	•		•
Be		•		٠				•	•		٠			•	٠	•			•	•	•			
Bi				٠	٠	•					٠			•									٠	
Ce	•	٠	٠	٠	•	٠		٠	•	٠	٠	•		•	٠	•	•		٠	•	•	•	٠	•
Co			•	•		•				•	•			•	٠		•					٠	•	
Cs		٠	٠	٠	•	٠		٠	•	٠	٠	•		٠	٠	٠	•			•			•	
Cu	•	•	•	•	٠	•			•	•	•			•	٠	•	•			•	٠	•	•	
Dy		•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	
Er		•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	
Eu		•	•	•	•	•		•	•	•	•	•		•		٠	•	•	•	•	•	•	•	•
Ga	٠		٠	٠	٠	•		•	•	•	٠			•	٠	•	٠		•				•	•
Gd		•	•	•	•	•		•	•	•	•	•		•	٠	٠	•	•	•	•	•	•	•	
Ge				٠		٠		٠			٠			٠	•		٠				•		•	
Hf		•		•	•	•		•	•	•	•	•		•	•	•	•	•	•	•			•	
Ho		٠	•	٠	٠	٠		٠		٠	٠	•		٠		•	٠	•	٠	٠	٠	٠	٠	
La	•	•	•	•	•	•		•	•	•	•	•		•	•	٠	•	•	•	•	•	•	•	•
Li	٠		•	•	•	•		•	•	•				•	٠	٠	٠		•	•	•	•		•
Lu		•	•	•	•	•		•	•	•	•	•		•	•	٠	•	•	•	•	•	•	•	
Mn	•	٠	•	٠	٠	•		•		•	٠	•		•	•	•	٠		٠	•	•	٠	•	•
Мо				٠		٠				٠	٠			•			•						٠	
Nb		٠	٠	٠	٠	٠		٠	٠	٠	٠	٠		٠	٠	•	٠	•	٠	•	٠		•	•
Nd	•	•	٠	•	٠	•		•	•	•	•	٠		•	•	٠	•	•	•	•	•	٠	•	•
Ni	٠		•	٠		•		•	•	•	٠			•	•	•	•		•	•	•	٠	•	
Pb	•	•	•	٠	٠	•		•	•	•	٠	•		•	٠	•	•		•	•	•	٠	•	•
Pr	•	٠	•	٠	•	•		•	•	•	٠	•		•	٠	•	•		•	•	•	•	•	•
Rb		•	•	٠	٠	•		•	•	•	٠	•		•	٠	•	•	•		•		٠	•	
Sb				٠	٠	•			•		•			•	٠	•	•		•	•			•	
Sc			•		•	•		•		•	٠			•	٠	•		•	•	•	•	•	•	•
Sm		٠	٠	٠	٠	٠		٠	•	٠	٠	•		٠	٠	•	•	•	•	•	•	٠	•	
Sn	•			٠	•	•			•		٠			•	٠	•	•		•	•			•	
Sr	•	٠	•	•	٠	٠		٠	•	٠	٠	•		٠	٠	٠	•	•	•	•	•	٠	•	•
Ta		٠	•	٠	٠	٠		٠			٠	•		٠		•	•		•	•			•	
Tb		٠	•	٠	•	•		•	•	•	٠	•		•		٠	٠	•	•	•	•	•	•	
Γh	•	•	•	•	•	•		•		•	•	•		•	•	•	•		•	•	•		•	
	Ľ	L2	L6	L7	L1	L15	L17	L19	L20	L21	L22	L24	L27	L28	L30	L33	L34	L43	L44	L45	L47	L55	L58	L62

TI				•	•	•					•			•			•						•	
Tm		•	•	•	•	•		•		•	•	•		•		•	•		•	•	•	•	•	
U	•			•						•		•		•		▼	▼		•	•	•	٠	•	
V			•	٠	٠	٠		٠		•	٠	٠		٠	•	•	٠		٠	▼	٠	•	▼	٠
W				٠	٠	٠					٠	٠							٠				▼	
Y	•	٠	•	٠	٠	٠		٠	•	•	٠	•		•	٠	•	٠		٠	•	٠	•	٠	•
Yb		٠	•	٠	٠	٠		٠		•	٠	٠		٠	٠	•	٠		٠	٠	٠	•	٠	
Zn	•		▼	•	•	٠		٠	•	•	٠	٠		٠	٠	•	٠		•	▼	٠	•	▼	•
Zr		•		٠		•		•	•	•		•			•	▼	V		•	•	•	•	•	•
	Ľ	L2	L6	L7	L11	L15	L17	L19	L20	L21	L22	L24	L27	L28	L30	L33	L34	L43	L44	L45	L47	L55	L58	L62

Figure 3: G-Probe 30 - Limestone, KCLs-1NP Pellet. Multiple z-score charts for laboratories participating in the G-Probe 30 round. Symbols indicate whether or not an elemental result complies with the -2<z<+2 criteria (see key).